原题链接:
题解:
本题属于经典的模板题——高斯消元解线性方程组
但是有一点小小的变形,本题仅对未知数组成的矩阵进行解的判断,没有扩展到增广矩阵。
对于增广矩阵而言,当矩阵的秩r<矩阵的列数m,此时矩阵可能有无穷个解也可能无解;当两者相等时,矩阵才有唯一解。
而对于只由未知数组成的矩阵而言,当矩阵的秩r<矩阵的列数m,此时矩阵便有解。
代码:
#include<bits/stdc++.h>
using namespace std;
int n;
const int N = 55;
double a[N][N];
const double eps = 1e-6;
void change(string s, map<string, map<int, int>>& mp, int pos) {
string ele = "";
for (int i = 0;i < s.size();i++) {
if (isdigit(s[i]))//数字入栈
{
int x = 0, j = i;//计算数字
while (j < s.size() && isdigit(s[j])) {
x = x * 10 + s[j] - '0';
j++;
}
i = j - 1;
mp[ele].insert({ pos,x });
ele = "";
}
else ele += s[i];
}
}
void gauss(int n, int m) {
int c, r;// c代表列 col , r代表行row
for (c = 0, r = 0; c < n; c++)//这里的n其实代表的是行,因为这时其实可以视为方阵(对角线的原因)
{
int t = r;// 先找到当前这一列,绝对值最大的一个数字所在的行号
for (int i = r; i < n; i++)
if (fabs(a[i][c]) > fabs(a[t][c]))
t = i;
if (fabs(a[t][c]) < eps) continue;// 如果当前这一列的最大数都是 0 ,那么所有数都是 0,就没必要去算了,因为它的约束方程,可能在上面几行
for (int i = c; i < m + 1; i++) swap(a[t][i], a[r][i]); 把当前这一行,换到最上面(不是第一行,是第 r 行)去
for (int i = m; i >= c; i--) a[r][i] /= a[r][c];// 把当前这一行的第一个数,变成 1, 方程两边同时除以 第一个数,必须要到着算,不然第一个数直接变1,系数就被篡改,后面的数字没法算
for (int i = r + 1; i < n; i++)// 把当前列下面的所有数,全部消成 0
if (fabs(a[i][c]) > eps)// 如果非0 再操作,已经是 0就没必要操作了
for (int j = m; j >= c; j--)// 从后往前,当前行的每个数字,都减去对应列 * 行首非0的数字,这样就能保证第一个数字是 a[i][0] -= 1*a[i][0];
a[i][j] -= a[r][j] * a[i][c];
r++;// 这一行的工作做完,换下一行
}
cout << "NY"[r < m] << endl;
}
int main() {
cin >> n;
for (int i = 0;i < n;i++) {
int m;cin >> m;
map<string, map<int, int>> mp;
for (int i = 0;i < m;i++) {
string s;cin >> s;
change(s, mp, i + 1);
}
memset(a, 0, sizeof(a));
int k = 0;
for (auto p : mp) {
for (int j = 0;j <= m;j++) {
if (j == m) a[k][j] = 0;
else a[k][j] = p.second[j + 1];
}
k++;
}
gauss(mp.size(), m);
}
}
坑点:
注意秩数要和未知数的个数(也即矩阵的列数作比较),而非行数。