202402-3 化学方程式配平

原题链接:

TUOJ (thusaac.com)

题解:

本题属于经典的模板题——高斯消元解线性方程组

但是有一点小小的变形,本题仅对未知数组成的矩阵进行解的判断,没有扩展到增广矩阵。

对于增广矩阵而言,当矩阵的秩r<矩阵的列数m,此时矩阵可能有无穷个解也可能无解;当两者相等时,矩阵才有唯一解。

而对于只由未知数组成的矩阵而言,当矩阵的秩r<矩阵的列数m,此时矩阵便有解。

代码:

#include<bits/stdc++.h>
using namespace std;
int n;
const int N = 55;
double a[N][N];
const double eps = 1e-6;

void change(string s, map<string, map<int, int>>& mp, int pos) {
	string ele = "";
	for (int i = 0;i < s.size();i++) {
		if (isdigit(s[i]))//数字入栈
		{
			int x = 0, j = i;//计算数字
			while (j < s.size() && isdigit(s[j])) {
				x = x * 10 + s[j] - '0';
				j++;
			}
			i = j - 1;
			mp[ele].insert({ pos,x });
			ele = "";
		}
		else ele += s[i];
	}
}

void gauss(int n, int m) {
	int c, r;// c代表列 col , r代表行row
	for (c = 0, r = 0; c < n; c++)//这里的n其实代表的是行,因为这时其实可以视为方阵(对角线的原因)
	{
		int t = r;// 先找到当前这一列,绝对值最大的一个数字所在的行号
		for (int i = r; i < n; i++)
			if (fabs(a[i][c]) > fabs(a[t][c]))
				t = i;

		if (fabs(a[t][c]) < eps) continue;// 如果当前这一列的最大数都是 0 ,那么所有数都是 0,就没必要去算了,因为它的约束方程,可能在上面几行

		for (int i = c; i < m + 1; i++) swap(a[t][i], a[r][i]); 把当前这一行,换到最上面(不是第一行,是第 r 行)去
		for (int i = m; i >= c; i--) a[r][i] /= a[r][c];// 把当前这一行的第一个数,变成 1, 方程两边同时除以 第一个数,必须要到着算,不然第一个数直接变1,系数就被篡改,后面的数字没法算
		for (int i = r + 1; i < n; i++)// 把当前列下面的所有数,全部消成 0
			if (fabs(a[i][c]) > eps)// 如果非0 再操作,已经是 0就没必要操作了
				for (int j = m; j >= c; j--)// 从后往前,当前行的每个数字,都减去对应列 * 行首非0的数字,这样就能保证第一个数字是 a[i][0] -= 1*a[i][0];
					a[i][j] -= a[r][j] * a[i][c];

		r++;// 这一行的工作做完,换下一行
	}
	cout << "NY"[r < m] << endl;
}

int main() {
	cin >> n;
	for (int i = 0;i < n;i++) {
		int m;cin >> m;
		map<string, map<int, int>>  mp;
		for (int i = 0;i < m;i++) {
			string s;cin >> s;
			change(s, mp, i + 1);
		}
		memset(a, 0, sizeof(a));
		int k = 0;
		for (auto p : mp) {
			for (int j = 0;j <= m;j++) {
				if (j == m) a[k][j] = 0;
				else a[k][j] = p.second[j + 1];
			}
			k++;
		}
		gauss(mp.size(), m);
	}
}

坑点:

注意秩数要和未知数的个数(也即矩阵的列数作比较),而非行数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值