在pycharm中配置GPU训练环境(Anaconda)(yolov5)

本文详细描述了如何在Anaconda中创建和管理虚拟环境,包括conda命令的使用,以及在使用yolov5模型训练过程中遇到的常见问题,如Python解释器查找、内存不足和CUDA版本冲突等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 具体的配置过程:

2. 在指定位置(路径)创建虚拟环境:

3. conda常用命令:

4: 在跑模型时候遇到的一些问题:

        4.1: conda添加python解释器找不到对应的python.exe文件

        4.2: 报错“OSError: [WinError 1455] 页面文件太小,无法完成操作。”

        4.3: 报错“CUDA out of memory. Tried to allocate 14.00 MiB

                  5: CUDA11.1版本出现NAN的问题原因及解决措施: 

                  6: 虚拟环境中的cuda和系统中cuda的区别:

                  7: 对于动漫角色,训练效果不是很好 :


1. 具体的配置过程:

手把手教你Anaconda安装虚拟环境配置yolov5

2. 在指定位置(路径)创建虚拟环境:

1:使用命令查看当前拥有的虚拟环境

conda info --envs

在这里插入图片描述
2:在指定目录下创建新的虚拟环境,输入命令:

conda create --prefix=C:/ProgramData/Anaconda3/envs/pytorch python=3.8

        其中C:/ProgramData/Anaconda3/envs 是创建的目录所在位置;/pytorch是所创建的环境的名称 python=3.8是创建的python的版本。
在这里插入图片描述

        可以看到,验证确实创建在我们想要的位置
在这里插入图片描述
        OK啦,创建成功:
在这里插入图片描述
在这里插入图片描述

3. conda常用命令:

 常用命令大全

  • 删除虚拟环境的代码如下(yolo5表示env名字) 
两者选其一:
conda env remove -n yolo5

conda env remove -p 虚拟环境路径
  • 激活虚拟环境
conda activate F:\Anaconda\envs\yolo5

4: 在跑模型时候遇到的一些问题:

4.1: conda添加python解释器找不到对应的python.exe文件

        网上有很多解决方法,我参考了这个:(也是用GPU训练的,如果解释器是anaconda虚拟环境中的python,那效果应该是一样的)

  • 直接在Virtualenv Enviroment中找conda的虚拟环境里的python.exe就可以
  • 直接在System Environment中找conda的虚拟环境就可以

4.2: 报错“OSError: [WinError 1455] 页面文件太小,无法完成操作。”

        这个好像和给cuda虚拟环境所在盘分配的虚拟内存有关:

        具体可以参考下边这个博客:

页面文件太小,无法完成操作。

4.3: 报错“CUDA out of memory. Tried to allocate 14.00 MiB

        这个应该是训练的模型所设置的batch-size太大了,GPU的显存满足不了

        把batch-size调小一些,如设置常用的256 128 64 32 16等,我是把yolov5中的16改为了8,然后问题就迎刃而解了。

        最后附上使用GPU训练yolov5模型成功的截图:

(之前用CPU跑同样规模的数据集跑了2个小时,用了GPU只需要16分钟,不得不说真香)

        显卡配置:(有钱一定换块好的)

5: CUDA11.1版本出现NAN的问题原因及解决措施: 

我在完成上述步骤后,出现了一些错误,具体表现为如下形式:

该问题出现的原因在于CUDA版本较高(11.1),最好采用10.2的CUDA版本 ,只需要在虚拟环境中安装10.2的cuda即可,不需要在系统中重新安装。

解决方法可以参考下述博客:

YOLOv5s GTX 1660 Ti训练时出现,box,obj,cla全是nan的问题P、R、mAP都是0,Pytorch和cuda、cudnn版本不对

GTX 16XX系显卡 yolov5训练结果出现NAN的问题

yolov5 训练自己的数据集后,检测不到目标的解决办法

此外,也可能是如下问题导致的:

服务器上训练好的yolov5数据集在自己电脑上什么都检测不出来(已解决)

6: 虚拟环境中的cuda和系统中cuda的区别:

虚拟环境中cuda版本与系统cuda版本不同有什么影响

7: 对于动漫角色,训练效果不是很好 :

原本想训练一个自动识别视频中动漫角色(九柱)的模型,但是拿 恋柱——甘露寺蜜璃和水柱——富冈义勇做了小实验(每个选取了各40张图片,其中3张作为验证集),在batch_size=8的情况下epoch=200,最后只能实现识别这两个人物不会出太大问题,但是你喂给它一张猫或狗或者其他柱可能会识别错误(可能是因为数据集太小的缘故,同时动漫人物本身识别也较为困难)

大家如果有开源的鬼灭之刃数据集,可以考虑分享给bz一下,嘿嘿;有问题欢迎在评论区留言!

### 设置 PyCharm 支持 YOLOv11 的开发环境 为了使 PyCharm 能够支持 YOLOv11 项目的开发,需要创建合适的虚拟环境并安装必要的依赖库。以下是详细的说明: #### 创建 Anaconda 虚拟环境 对于复杂的机器学习项目如 YOLOv11,建议使用 Conda 来管理 Python 版本和包依赖关系。可以按照以下方式创建一个新的 Conda 环境[^4]: ```bash conda create --prefix=C:/ProgramData/Anaconda3/envs/yolov11 python=3.8 ``` 这会建立一个名为 `yolov11` 的新环境,并指定 Python 解释器版本为 3.8。 #### 安装 Ultralytics 库和其他依赖项 一旦设置了特定于项目的 Conda 环境,则可以在其中安装所需的软件包。特别是针对 YOLO 模型训练和推理所必需的 Ultralytics 库可以通过下面这条命令来获取[^5]: ```bash conda install -c conda-forge ultralytics ``` 除了上述操作外,还需要考虑其他可能影响模型运行效果的因素,例如 GPU 加速的支持等;不过这些细节取决于具体的硬件条件和个人需求。 #### 将新建的 Conda 环境配置PyCharm 中 为了让 PyCharm 认识到刚刚创建好的 Conda 环境作为解释器选项之一,在 PyCharm 内部执行如下步骤[^2]: - 打开 **Settings/Preferences** - 寻找 **Project Interpreter** 页面 - 添加新的解释器指向之前通过 Conda 命令行定义的位置(即 C:\ProgramData\Anaconda3\envs\yolov11) 完成以上设置之后,PyCharm 即可识别此环境中已有的所有 Python 包,并允许开发者利用 IDE 提供的各种辅助特性来进行高效的编码工作[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值