《深入浅出PyTorch》学习笔记(未完结,持续更新中)

0 前言:

学习本门课的目的是为了系统学习一下Pytorch的使用,在此之前用mmclassification做项目、打Kaggle、学习(吴恩达、李宏毅)老师课程以及“手把手带你自学Transformers”课程的时候简单使用过Pytorch,也接触过一些Tensorflow。不过,这些经验都比较零散,确实不够全面深入。因此希望能通过本门课的学习进一步提高自己的动手能力,为之后的学习和实践打好基础。

1 其他笔记:

如果感兴趣的话,可以查阅我其他与机器学习(ML)、深度学习(DL)以及自然语言处理(NLP)相关的学习笔记:

深度学习入门指南——Python基础及ML常用库篇-CSDN博客

⭐⭐[ pytorch+tensorflow ]⭐⭐配置两大框架下的GPU训练环境_pytorch环境下需要装tensorflow-gpu 吗-CSDN博客

深度学习入门指南——2022吴恩达学习笔记Coursera《Machine Learning》篇(已完结,超详细)_吴恩达 machine learning-CSDN博客

深度学习入门指南——2021吴恩达学习笔记deeplearning.ai《深度学习专项课程》篇(已完结)-CSDN博客

手把手带你实战Transformers(学习笔记)_transformers学习笔记-CSDN博客

李宏毅学习笔记——2024春《GENERATIVE AI》篇(已完结)_李宏毅 人工智能-CSDN博客

2 《深入浅出PyTorch》课程资源及简介:

在线阅读地址:深入浅出PyTorch — 深入浅出PyTorch

视频链接:深入浅出Pytorch_哔哩哔哩_bilibili

Github资源:PyTorch入门教程

简介:

PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。

考虑到PyTorch的学习兼具理论储备和动手训练,两手都要抓两手都要硬的特点,我们开发了《深入浅出PyTorch》课程,期望以组队学习的形式,帮助大家从入门到熟练掌握PyTorch工具,进而实现自己的深度学习算法。

我们的愿景是:通过组队学习,大家能够掌握由浅入深地PyTorch的基本知识和内容,经过自己的动手实践加深操作的熟练度。同时通过项目实战,充分锻炼编程能力,掌握PyTorch进行深度学习的基本流程,提升解决实际问题的能力。

学习的先修要求是,会使用Python编程,了解包括神经网络在内的机器学习算法,勤于动手实践。

《深入浅出PyTorch》是一个系列,一共有三个部分。已经上线的是本系列的第一、二部分,后续会不断更新《深入浅出PyTorch》(下),给出更贴合实际应用的实战案例。

3 学习笔记:

注:本人在学习该课程时已经具备了一些基础,因此为了避免记录冗余知识,节约时间,本文仅在在线笔记的基础上记录一些对本人而言较为重要的知识点(相当于查漏补缺吧,哈哈,大家可以选择性浏览)。

章节简介
第零章:前置知识(选学)人工智能简史
相关评价指标
常用包的学习
Jupyter相关操作
第一章:PyTorch的简介和安装

PyTorch简介
PyTorch的安装
PyTorch相关资源简介

第二章:PyTorch基础知识

张量及其运算
自动求导简介
并行计算、CUDA和cuDNN简介

AI硬件加速设备

第三章:PyTorch的主要组成模块

思考:完成一套深度学习流程需要哪些关键环节
基本配置
数据读入
模型构建

模型初始化
损失函数

训练和评估

可视化
优化器

第四章:PyTorch基础实战基础实战——ResNet网络讲解
基础实战——FashionMNIST时装分类
第五章:PyTorch模型定义模型定义方式
利用模型块快速搭建复杂网络
模型修改
模型保存与读取
第六章:PyTorch进阶训练技巧自定义损失函数
动态调整学习率
模型微调-torchvision
模型微调-timm
半精度训练
数据扩充-imgaug
使用argparse进行调参
第七章:PyTorch可视化可视化网络结构
可视化CNN卷积层
使用TensorBoard可视化训练过程
使用wandb可视化训练过程
第八章:PyTorch生态简介简介
图像—torchvision
视频—PyTorchVideo
文本—torchtext
音频—torchaudio
第九章:模型部署使用ONNX进行部署并推理
第十章:常见网络代码的解读(推进中)计算机视觉
图像分类
ResNet源码解读
Swin Transformer源码解读
Vision Transformer源码解读
RNN源码解读
LSTM源码解读及其实战
目标检测
YOLO系列解读(与MMYOLO合作)
图像分割
自然语言处理
RNN源码解读
音频处理
视频处理
其他

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值