0 前言:
学习本门课的目的是为了系统学习一下Pytorch的使用,在此之前用mmclassification做项目、打Kaggle、学习(吴恩达、李宏毅)老师课程以及“手把手带你自学Transformers”课程的时候简单使用过Pytorch,也接触过一些Tensorflow。不过,这些经验都比较零散,确实不够全面深入。因此希望能通过本门课的学习进一步提高自己的动手能力,为之后的学习和实践打好基础。
1 其他笔记:
如果感兴趣的话,可以查阅我其他与机器学习(ML)、深度学习(DL)以及自然语言处理(NLP)相关的学习笔记:
深度学习入门指南——Python基础及ML常用库篇-CSDN博客
⭐⭐[ pytorch+tensorflow ]⭐⭐配置两大框架下的GPU训练环境_pytorch环境下需要装tensorflow-gpu 吗-CSDN博客
深度学习入门指南——2022吴恩达学习笔记Coursera《Machine Learning》篇(已完结,超详细)_吴恩达 machine learning-CSDN博客
深度学习入门指南——2021吴恩达学习笔记deeplearning.ai《深度学习专项课程》篇(已完结)-CSDN博客
手把手带你实战Transformers(学习笔记)_transformers学习笔记-CSDN博客
李宏毅学习笔记——2024春《GENERATIVE AI》篇(已完结)_李宏毅 人工智能-CSDN博客
2 《深入浅出PyTorch》课程资源及简介:
在线阅读地址:深入浅出PyTorch — 深入浅出PyTorch
视频链接:深入浅出Pytorch_哔哩哔哩_bilibili
Github资源:PyTorch入门教程
简介:
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
考虑到PyTorch的学习兼具理论储备和动手训练,两手都要抓两手都要硬的特点,我们开发了《深入浅出PyTorch》课程,期望以组队学习的形式,帮助大家从入门到熟练掌握PyTorch工具,进而实现自己的深度学习算法。
我们的愿景是:通过组队学习,大家能够掌握由浅入深地PyTorch的基本知识和内容,经过自己的动手实践加深操作的熟练度。同时通过项目实战,充分锻炼编程能力,掌握PyTorch进行深度学习的基本流程,提升解决实际问题的能力。
学习的先修要求是,会使用Python编程,了解包括神经网络在内的机器学习算法,勤于动手实践。
《深入浅出PyTorch》是一个系列,一共有三个部分。已经上线的是本系列的第一、二部分,后续会不断更新《深入浅出PyTorch》(下),给出更贴合实际应用的实战案例。
3 学习笔记:
注:本人在学习该课程时已经具备了一些基础,因此为了避免记录冗余知识,节约时间,本文仅在在线笔记的基础上记录一些对本人而言较为重要的知识点(相当于查漏补缺吧,哈哈,大家可以选择性浏览)。
章节 | 简介 |
---|---|
第零章:前置知识(选学) | 人工智能简史 相关评价指标 常用包的学习 Jupyter相关操作 |
第一章:PyTorch的简介和安装 | PyTorch简介 |
第二章:PyTorch基础知识 | 张量及其运算 AI硬件加速设备 |
第三章:PyTorch的主要组成模块 | 思考:完成一套深度学习流程需要哪些关键环节 模型初始化 训练和评估 可视化 |
第四章:PyTorch基础实战 | 基础实战——ResNet网络讲解 基础实战——FashionMNIST时装分类 |
第五章:PyTorch模型定义 | 模型定义方式 利用模型块快速搭建复杂网络 模型修改 模型保存与读取 |
第六章:PyTorch进阶训练技巧 | 自定义损失函数 动态调整学习率 模型微调-torchvision 模型微调-timm 半精度训练 数据扩充-imgaug 使用argparse进行调参 |
第七章:PyTorch可视化 | 可视化网络结构 可视化CNN卷积层 使用TensorBoard可视化训练过程 使用wandb可视化训练过程 |
第八章:PyTorch生态简介 | 简介 图像—torchvision 视频—PyTorchVideo 文本—torchtext 音频—torchaudio |
第九章:模型部署 | 使用ONNX进行部署并推理 |
第十章:常见网络代码的解读(推进中) | 计算机视觉 图像分类 ResNet源码解读 Swin Transformer源码解读 Vision Transformer源码解读 RNN源码解读 LSTM源码解读及其实战 目标检测 YOLO系列解读(与MMYOLO合作) 图像分割 自然语言处理 RNN源码解读 音频处理 视频处理 其他 |