题解:用i表示此时要用第i+1个点,用j表示要用n个点中的哪一个点,0表示此时点方向为顺时针0表示为逆时针,然后转移方程就是
放第i个点的时候取从上一个点走过来或者去相反旋转方向往后数i个点走过来的距离两者取最大值
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define S (j+1)%n
#define N (j-1+n)%n
#define LS (i+j)%n
#define LN (j-i+n)%n
const int mx = 2e3+505;
struct node{
double x,y;
}a[mx];
double pw(double x){
return x*x;
}
double dist(node a,node b){
return sqrt(pw(a.x-b.x)+pw(a.y-b.y));
}
double dp[2][mx][mx];
int main(){
int n;
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(int i = 0; i < n; i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
for(int i = 1; i < n; i++)
for(int j = 0; j < n; j++){
dp[0][i][j] = max(dp[0][i-1][N]+dist(a[j],a[N]),dp[1][i-1][LN]+dist(a[j],a[LN]));
dp[1][i][j] = max(dp[1][i-1][S]+dist(a[j],a[S]),dp[0][i-1][LS]+dist(a[j],a[LS]));
}
double ans = 0;
for(int i = 0; i < n; i++)
ans = max(ans,max(dp[0][n-1][i],dp[1][n-1][i]));
printf("%.10f\n",ans);
return 0;
}