hdu6134-(莫比乌斯反演)

这篇博客介绍了如何利用莫比乌斯反演解决数论问题,特别是针对题目HDU6134中求解1-i所有数被i除后向下取整和向上取整的总和问题。通过建立F[i]和f[i]的关系,并使用莫比乌斯函数消除因质数因子重复减法导致的误差,最终通过累加前缀和得到答案。
摘要由CSDN通过智能技术生成

题解:设f[i]为1-i所有的数被i除后向下取整总和,F[i]为1-i所有数被i除以后向上取整的总和最后满足一个关系:

F[i]=f[i-1]+i;

f[i]=F[i]-i+cnt(cnt为i因子个数)

这里我让f[i]=F[i]重复使用

F[i]=F[i]-F[i/p]{p是i的所有质数因子}那么这里如果多个质数可能重复减了了好几次那么这里就要用容斥原理加回去,那么这里就可以用莫比乌斯反演里面的函数去掉几个质数共同的部分多减的次数即可

最后把所有前缀都加起来即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long int ll;
const int mx = 1e6+5;
const ll mod = 1e9+7;
int u[mx],vis[mx],p[mx];
int F[mx],f[mx];
void init(){
    f[1] = 1;
    F[1] = 1;
    for(int i = 2; i < mx; i++){
        if(!vis[i]) p[++p[0]] = i,u[i] = -1;
        for(int j = 1; j <= p[0]&&i*p[j]<mx; j++){
            vis[p[j]*i] = 1;
            if(i%p[j]==0){
                u[i*p[j]] = 0;
                break;
            }
            else
                u[i*p[j]] = -u[i];
        }
    }
    for(int i = 2; i < mx; i++){
        F[i] = f[i-1]+i;
        int x = i;;
        int ans = 1;
        for(int j = 1; p[j]*p[j] <= i; j++){
            int cnt = 1;
            while(x%p[j]==0){
                x/=p[j];
                cnt++;
            }
            ans*=cnt;
        }
        if(x>1)
            ans *= 2;
        f[i] = F[i]-i+ans;
    }
    for(int i = 2; i < mx; i++)
        f[i] = F[i];
    for(int i = 2; i < mx; i++){
        for(int j = i; j < mx; j+=i)
            if(u[i])
                F[j] += u[i]*f[j/i];
    }
    for(int i = 2; i < mx; i++)
        F[i] = (F[i-1]+F[i])%mod;
}
int main(){
    ll sum = 0;
    init();
    int n;
    while(scanf("%d",&n)!=EOF){
        printf("%d\n",F[n]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值