题解:如果k不是质数肯定不是最小除数,如果k是质数的话,那么就是k的倍数的那么些数,但是其中一些数最小除数不是k的话那么就是那些k和比k小的质数配的数但是这些数可能会重复那么就得用容斥原理做。
质数的话只要打到根号1e11即可,因为大于根号的话不会出现两个大于根号1e11的质数配的情况。最后注意一下在一些可能越界的情况下取余即可
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long int ll;
const int mx = 1e6+5;
const int mod = 1e9+7;
bool vis[mx];
int p[mx];
void init(){
for(int i = 2; i < mx; i++){
if(!vis[i]) p[++p[0]] = i;
for(int j = 1; j <= p[0]&&i*p[j]<mx; j++){
vis[i*p[j]] = 1;
if(i%p[j]==0)
break;
}
}
}
bool isprime(ll k){
for(int i = 1; i <= p[0]&&p[i]*p[i]<=k; i++)
if(k%p[i]==0)
return 0;
return 1;
}
ll dfs(ll n,ll k,int cnt,int s,ll c){
ll d = n/k%mod;
ll ans = cnt*(d+d*d)/2%mod*k%mod;
for(int i = s; i <= p[0]&&p[i]<c; i++){
if(p[i]*k>n)
break;
ans = (ans+dfs(n,k*p[i],-cnt,i+1,c))%mod;
}
return ans%mod;
}
int main(){
int t;
init();
ll l,r,k;
scanf("%d",&t);
for(int casei = 1; casei <= t; casei++){
scanf("%I64d%I64d%I64d",&l,&r,&k);
printf("Case #%d: ",casei);
if(!isprime(k)){
puts("0");
continue;
}
l--;
ll sum1 = dfs(r,k,1,1,k);
ll sum2 = dfs(l,k,1,1,k);
printf("%I64d\n",(sum1-sum2+mod)%mod);
}
return 0;
}