hdu6169-(容斥原理)

题解:如果k不是质数肯定不是最小除数,如果k是质数的话,那么就是k的倍数的那么些数,但是其中一些数最小除数不是k的话那么就是那些k和比k小的质数配的数但是这些数可能会重复那么就得用容斥原理做。
质数的话只要打到根号1e11即可,因为大于根号的话不会出现两个大于根号1e11的质数配的情况。最后注意一下在一些可能越界的情况下取余即可

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long int ll;
const int mx = 1e6+5;
const int mod = 1e9+7;
bool vis[mx];
int p[mx];
void init(){
    for(int i = 2; i < mx; i++){
        if(!vis[i]) p[++p[0]] = i;
        for(int j = 1; j <= p[0]&&i*p[j]<mx; j++){
            vis[i*p[j]] = 1;
            if(i%p[j]==0)
                break;
        }
    }
}
bool isprime(ll k){
    for(int i = 1; i <= p[0]&&p[i]*p[i]<=k; i++)
        if(k%p[i]==0)
            return 0;
    return 1;
}
ll dfs(ll n,ll k,int cnt,int s,ll c){
    ll d = n/k%mod;
    ll ans = cnt*(d+d*d)/2%mod*k%mod;
    for(int i = s; i <= p[0]&&p[i]<c; i++){
        if(p[i]*k>n)
            break;
        ans = (ans+dfs(n,k*p[i],-cnt,i+1,c))%mod;
    }
    return ans%mod;
}
int main(){
    int t;
    init();
    ll l,r,k;
    scanf("%d",&t);
    for(int casei = 1; casei <= t; casei++){
        scanf("%I64d%I64d%I64d",&l,&r,&k);
        printf("Case #%d: ",casei);
        if(!isprime(k)){
            puts("0");
            continue;
        }
        l--;
        ll sum1 = dfs(r,k,1,1,k);
        ll sum2 = dfs(l,k,1,1,k);
        printf("%I64d\n",(sum1-sum2+mod)%mod);
    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值