斐波那契数列递归算法和非递归算法以及其时间复杂度分析

1、在学习数据结构这门课的过程中,发现斐波那契数列的递归算法以及非递归算法,以及其时间复杂度分析是一个小难点。所以特别总结一下。

斐波那契数列的表达式:

Fibonacci数列简介:

F(1)=1

F(2)=1

F(n)=F(n-1)+F(n-2)    (n>2)

2、 (1)斐波那契数列的递归算法思想描述:利用递归思想,每次计算当前的值时候,就要引用之前的两个值,一步一步的递归,一直到最起始处,才能用到F(1)和F(2)。

递归算法程序:

int recursive_method(int n)
{
    if (n == 1 || n == 2)
         return 1;
   else
         return recursive_method(n - 1) + recursive_method(n - 2);
}

(2)递归算法调用的顺序举例子。


Fib(5)的递归调用过程

图1:Fib(5)的递归调用过程

在递归调用过程中Fib(3)被计算了2次,Fib(2)被计算了3次。Fib(1)被调用了5次,Fib(0)中被调用了3次。所以,递归的效率低下,但优点是代码简单,容易理解。

(3)递归算法时间复杂度为:O(2^(N/2))<=T(N)<=O(2^N)。这个时间复杂度参考具体的计算方法参考http://bbs.pediy.com/showthread.php?t=123051。

3、(1)斐波那契的非递归算法

<span style="font-family:Microsoft YaHei;">int non_recursive_method(int n)
{
int p = 1;
int q = 1;
if (n == 1 || n == 2)
return 1;
else
{
for(int i = 3; i < n; i++)
{
int tmp = p;//将第一个值p赋给tmp
p = q;       //将第二个值q赋给p,以后每一次赋值都将得到的最新的F(n)赋给p,从后面语句可//以看出,q储存的为最新的F(n)

q = tmp + q;
}
return q;
}
}</span>
(2)斐波那契非递归算法时间复杂度为O(n)

注:考研的时候重点在于递归思想的理解方面。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ACMSunny

赠人玫瑰,手有余香。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值