POJ 1836 Alignment
题目描述:
题目链接:POJ 1836 Alignment
题目大意:
令到原队列的最少士兵出列后,使得新队列任意一个士兵都能看到左边或者右边的无穷远处,且除最高点外任一士兵旁边不能存在等高的士兵。
图来自http://blog.csdn.net/lyy289065406/article/details/6648129
解题思路:
大致的想法就是分别做两个
LIS
(一个正序
dp1
一个逆序
dp2
),然后从队首到队尾枚举位置,最后答案就是(用N表示原队列的总兵数):
N−max(dp1[i]+dp2[i])
复杂度分析:
时间复杂度
O(n2))
空间复杂度
O(n)
AC代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 1010;
double high[maxn];
int dpr[maxn];
int dpl[maxn];
int main(){
int n;
while(scanf("%d",&n) != EOF){
for(int i = 0; i < n; i++){
scanf("%lf" ,&high[i]);
dpr[i] = dpl[i] = 1;
}
for(int i = 1; i < n; i++){
for(int j = i - 1; j >= 0; j--){
if(high[i] > high[j]){
dpl[i] = max(dpl[i],dpl[j] + 1);
}
}
}
for(int i = n - 2; i >= 0; i--){
for(int j = i + 1; j < n; j++){
if(high[i] > high[j]){
dpr[i] = max(dpr[i],dpr[j] + 1);
}
}
}
int ans=dpl[n-1];
for(int i=0;i<n-1;i++)
{
for(int j=i+1;j<n;j++)
{
if(dpl[i]+dpr[j]>ans)
{
ans=dpl[i]+dpr[j];
}
}
}
printf("%d\n",n - ans);
}
return 0;
}
/**********************************
12
0.9 0.8 0.7 1 0.6 0.5 1.1 1.2 1.3 1.4 1.5 1.6
5
1 1 1 1 1
5
1 1.5 2 1.5 1
8
3 4 5 1 2 5 4 3
3
5 5 5
3
5 5 4
4
5 5 4 6
************************************/