POJ 1836 Alignment 双向LIS+DP

POJ 1836 Alignment

题目描述:

  题目链接:POJ 1836 Alignment

题目大意:

  令到原队列的最少士兵出列后,使得新队列任意一个士兵都能看到左边或者右边的无穷远处,且除最高点外任一士兵旁边不能存在等高的士兵。

图来自http://blog.csdn.net/lyy289065406/article/details/6648129

解题思路:

  大致的想法就是分别做两个 LIS (一个正序 dp1 一个逆序 dp2 ),然后从队首到队尾枚举位置,最后答案就是(用N表示原队列的总兵数): Nmaxdp1[i]+dp2[i]
  

复杂度分析:

时间复杂度 O(n2))
空间复杂度 O(n)

AC代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>

using namespace std;
const int maxn = 1010;
double high[maxn];
int dpr[maxn];
int dpl[maxn];

int main(){
    int n;
    while(scanf("%d",&n) != EOF){
        for(int i = 0; i < n; i++){
            scanf("%lf" ,&high[i]);
            dpr[i] = dpl[i] = 1;
        }
        for(int i = 1; i < n; i++){
            for(int j = i - 1; j >= 0; j--){
                if(high[i] > high[j]){
                    dpl[i] = max(dpl[i],dpl[j] + 1);
                }
            }
        }
        for(int i = n - 2; i >= 0; i--){
            for(int j = i + 1; j < n; j++){
                if(high[i] > high[j]){
                    dpr[i] = max(dpr[i],dpr[j] + 1);
                }
            }
        }
        int ans=dpl[n-1];
        for(int i=0;i<n-1;i++)
        {
            for(int j=i+1;j<n;j++)
            {
                if(dpl[i]+dpr[j]>ans)
                {
                    ans=dpl[i]+dpr[j];
                }
            }
        }
        printf("%d\n",n - ans);
    }
    return 0;
}

/**********************************
12
0.9 0.8 0.7 1 0.6 0.5 1.1 1.2 1.3 1.4 1.5 1.6
5
1 1 1 1 1
5
1 1.5 2 1.5 1
8
3 4 5 1 2 5 4 3
3
5 5 5
3
5 5 4
4
5 5 4 6
************************************/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值