poj 1836 Alignment(dp,LIS)

链接:poj 1836

题意:士兵站成一行,求最少要多少的士兵出列,

使得每个士兵都能至少看到一个最边上的士兵

中间某个人能看到最边上的士兵的条件是:

该士兵的身高一定强大于他某一边(左边或右边)所有人的身高,

身高序列可以是:

1  2  3   4   5   4   3   2   1  或者 

1   2   3   4   5   5   4   3   2   1

分析:要求最少出列数,就是留队士兵人数最大,

即左边的递增序列人数和右边的递减序列人数之和最大

因而可转化为求“最长升序子序列”和“最长降序子序列”问题


LIS之 n*n算法 (32MS)

#include<stdio.h>
#define max(a,b) a>b?a:b
int main()
{
    double a[1010];
    int dp1[1010],dp2[1010];
    int i,j,n,ans,max1,max2;
    while(scanf("%d",&n)!=EOF){
        for(i=1;i<=n;i++)
            scanf("%lf",&a[i]);
        ans=max1=max2=0;
        for(i=1;i<=n;i++){    //最长升序
            dp1[i]=1;
            for(j=1;j<=i;j++)
                if(a[j]<a[i]&&dp1[j]+1>dp1[i])
                    dp1[i]=dp1[j]+1;
        }
        for(i=n;i>=1;i--){      //最长降序
            dp2[i]=1;
            for(j=n;j>i;j--)
                if(a[j]<a[i]&&dp2[j]+1>dp2[i])
                    dp2[i]=dp2[j]+1;
        }
        for(i=1;i<=n;i++)       //最长升降序之和
            for(j=i+1;j<=n;j++)
                ans=max(ans,dp1[i]+dp2[j]);
        printf("%d\n",n-ans);  //最少出列数
    }
    return 0;
}<span style="font-family:KaiTi_GB2312;font-size:18px;">
</span>

LIS之 n*log n 算法 (235MS)


#include<stdio.h>
#define INF 3.0
double c[1010];
int bin_find1(int l,int r,double x)
{
    int mid=(l+r)/2;
    while(l!=r){
        if(x<c[mid])
            r=mid;
        else if(x>c[mid])
            l=mid+1;
        else
            return mid;
        mid=(l+r)/2;
    }
    return l;
}
int bin_find2(int l,int r,double x)
{
    int mid=(l+r)/2;
    while(l!=r){
        if(x>c[mid])
            r=mid;
        else if(x<c[mid])
            l=mid+1;
        else
            return mid;
        mid=(l+r)/2;
    }
    return l;
}
int main()
{
    double a[1010];
    int i,j,k,n,len_l,len_r,max;
    while(scanf("%d",&n)!=EOF){
        for(i=1;i<=n;i++)
            scanf("%lf",&a[i]);
        max=0;
        for(k=1;k<=n;k++){
            c[0]=-1;           //最长升序
            len_l=1;
            for(i=1;i<=k;i++){
                c[len_l]=INF;
                j=bin_find1(0,len_l,a[i]);
                c[j]=a[i];
                if(j==len_l)
                    len_l++;
            }
            len_l--;  
            c[k]=INF;         //最长降序
            len_r=1;
            for(i=k+1;i<=n;i++){
                c[k+len_r]=-1;
                j=bin_find2(k,k+len_r,a[i]);
                c[j]=a[i];
                if(j==k+len_r)
                    len_r++;
            }
            len_r--;
            if(max<len_l+len_r)  //最长升降序的和
                max=len_l+len_r;
        }
        printf("%d\n",n-max);
    }
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值