一道经典B(打)F(表)S(题)之“Find The Multiple”

本文探讨了一种使用广度优先搜索(BFS)策略解决特定数学问题的方法,即寻找一个正整数n的倍数m,且m仅由0和1组成。通过对比两种不同的实现方式,一种是直接使用BFS算法,另一种是预先计算并存储所有可能的解,展示了如何在时间和空间复杂度之间做出权衡。
摘要由CSDN通过智能技术生成

题目:

   Given a positive integer n, write a program to find out a nonzero multiple m of n whose decimal representation contains only the digits 0 and 1.

   You may assume that n is not greater than 200 and there is a corresponding m containing no more than 100 decimal digits.

 

   The input file may contain multiple test cases. Each line contains a value of n (1 <= n <= 200). A line containing a zero terminates the input.

 

   For each value of n in the input print a line containing the corresponding value of m. The decimal representation of m must not contain more than 100 digits. If there are multiple solutions for a given value of n, any one of them is acceptable.

  Sample Input

    2

    6

    19

    0

  Sample Output

    10

    100100100100100100

    111111111111111111

题目大意:

  输入一个不超过200的整数 n,找出一个整数 m 使得 m 是 n 的整数倍,而且 m 只能由 0 和 1 组成。

解题思路:

  一道经典的BFS。

  一开始我们可能会认为这道题的结果很大,long 型存不下,但是我用程序实际跑了一下,发现 long 是能存下的,c++应该是unsign long long能存下。

  所以就交了几次,一发超时,一发超内存。。。。十分尴尬。

  然后我就特么的 打了个表。。。了个表。。。个表。。。表。。。

超内存代码(BFS思想,java语言):

 1 import java.util.*;
 2 import java.math.BigInteger;
 3 public class Main{
 4 
 5     public static void main(String[] args){
 6         Scanner sc = new Scanner(System.in);
 7         while(sc.hasNext()){
 8             int n = sc.nextInt();
 9             if(n == 0){break;}
10             Queue<String> m = new LinkedList<String>();
11             m.offer("1");
12             long p = Long.valueOf(m.peek());
13             while(p % n != 0){
14                 String t = m.peek();
15                 m.poll();
16                 m.offer(t + "0");
17                 m.offer(t + "1");
18                 p = Long.valueOf(m.peek());
19             }    
20             System.out.println(m.peek());
21         }
22     }
23 }

AC代码(打表):

  1 import java.util.*;
  2 import java.math.BigInteger;
  3 public class POJ1426{
  4     
  5     static String list[] = {
  6         "1",
  7         "10",
  8         "111",
  9         "100",
 10         "10",
 11         "1110",
 12         "1001",
 13         "1000",
 14         "111111111",
 15         "10",
 16         "11",
 17         "11100",
 18         "1001",
 19         "10010",
 20         "1110",
 21         "10000",
 22         "11101",
 23         "1111111110",
 24         "11001",
 25         "100",
 26         "10101",
 27         "110",
 28         "110101",
 29         "111000",
 30         "100",
 31         "10010",
 32         "1101111111",
 33         "100100",
 34         "1101101",
 35         "1110",
 36         "111011",
 37         "100000",
 38         "111111",
 39         "111010",
 40         "10010",
 41         "11111111100",
 42         "111",
 43         "110010",
 44         "10101",
 45         "1000",
 46         "11111",
 47         "101010",
 48         "1101101",
 49         "1100",
 50         "1111111110",
 51         "1101010",
 52         "10011",
 53         "1110000",
 54         "1100001",
 55         "100",
 56         "100011",
 57         "100100",
 58         "100011",
 59         "11011111110",
 60         "110",
 61         "1001000",
 62         "11001",
 63         "11011010",
 64         "11011111",
 65         "11100",
 66         "100101",
 67         "1110110",
 68         "1111011111",
 69         "1000000",
 70         "10010",
 71         "1111110",
 72         "1101011",
 73         "1110100",
 74         "10000101",
 75         "10010",
 76         "10011",
 77         "111111111000",
 78         "10001",
 79         "1110",
 80         "11100",
 81         "1100100",
 82         "1001",
 83         "101010",
 84         "10010011",
 85         "10000",
 86         "1111111101",
 87         "111110",
 88         "101011",
 89         "1010100",
 90         "111010",
 91         "11011010",
 92         "11010111",
 93         "11000",
 94         "11010101",
 95         "1111111110",
 96         "1001",
 97         "11010100",
 98         "10000011",
 99         "100110",
100         "110010",
101         "11100000",
102         "11100001",
103         "11000010",
104         "111111111111111111",
105         "100",
106         "101",
107         "1000110",
108         "11100001",
109         "1001000",
110         "101010",
111         "1000110",
112         "100010011",
113         "110111111100",
114         "1001010111",
115         "110",
116         "111",
117         "10010000",
118         "1011011",
119         "110010",
120         "1101010",
121         "110110100",
122         "10101111111",
123         "110111110",
124         "100111011",
125         "111000",
126         "11011",
127         "1001010",
128         "10001100111",
129         "11101100",
130         "1000",
131         "11110111110",
132         "11010011",
133         "10000000",
134         "100100001",
135         "10010",
136         "101001",
137         "11111100",
138         "11101111",
139         "11010110",
140         "11011111110",
141         "11101000",
142         "10001",
143         "100001010",
144         "110110101",
145         "100100",
146         "10011",
147         "100110",
148         "1001",
149         "1111111110000",
150         "11011010",
151         "100010",
152         "1100001",
153         "11100",
154         "110111",
155         "11100",
156         "1110001",
157         "11001000",
158         "10111110111",
159         "10010",
160         "1110110",
161         "1010100",
162         "10101101011",
163         "100100110",
164         "100011",
165         "100000",
166         "11101111",
167         "11111111010",
168         "1010111",
169         "1111100",
170         "1111110",
171         "1010110",
172         "11111011",
173         "10101000",
174         "10111101",
175         "111010",
176         "1111011111",
177         "110110100",
178         "1011001101",
179         "110101110",
180         "100100",
181         "110000",
182         "100101111",
183         "110101010",
184         "11010111",
185         "11111111100",
186         "1001111",
187         "10010",
188         "100101",
189         "110101000",
190         "1110",
191         "100000110",
192         "1001011",
193         "1001100",
194         "1010111010111",
195         "110010",
196         "11101111",
197         "111000000",
198         "11001",
199         "111000010",
200         "101010",
201         "110000100",
202         "1101000101",
203         "1111111111111111110",
204         "111000011",
205         "1000"
206     };
207     public static void main(String[] args){
208         Scanner sc = new Scanner(System.in);
209         while(sc.hasNext()){
210             int n = sc.nextInt();
211             if(n == 0){break;}
212             System.out.println(list[n - 1]);
213         }
214     }
215 }

至于C++版本的代码,博主博客不再发布了,毕竟大多数人用C++,网上很多解题报告任君选择。

转载于:https://www.cnblogs.com/love-fromAtoZ/p/7551264.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值