对正整数a和b,当a>b时,若a中含有与b相同的公约数,则a中去掉b后剩余的部分a-b中也应含有与b相同的公约数,对a-b和b计算公约数就相当于对a和b计算公约数。反复使用最大公约数的上述性质,直到a和b相等为止,这时,a或b就是它们的最大公约数。这三条性质,也可以表示为:
性质1 如果a>b,则a和b与a-b和b的最大公约数相同,即Gcd(a, b) = Gcd(a-b, b)
性质2 如果b>a,则a和b与a和b-a的最大公约数相同,即Gcd(a, b) = Gcd(a, b-a)
性质3 如果a=b,则a和b的最大公约数与a值和b值相同,即Gcd(a, b) = a = b
#include<stdio.h>
int Gcd(int a,int b)
{
int i;
for(i=0;;i++)
{
if(a>b)
{
a=a-b;
}
if(b>a)
{
b=b-a;
}
if(a==b)
{
return a;
}}
}
int main()
{
int x,y;
printf("Input a,b:");
scanf("%d,%d",&x,&y);
if(x<=0||y<=0)
{
printf("Input error!\n");
}
else
{
printf("%d\n",Gcd(x,y));
}
}