PySpark-aggregate函数说明

本文详细解析了 Spark 中 aggregate 函数的工作原理,包括如何通过 seqOp 和 combOp 对各分区内的数据进行局部聚合,以及如何将不同分区的数据进行全局合并。通过两个具体的示例展示了函数的实现过程和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

聚集各分区内的元素,并利用combOp和zerovalue函数将各分区合并

The functions  op(t1, t2)  is allowed to modify  t1  and return it as its result value to avoid object allocation; however, it should not modify  t2 .
函数 op(t1, t2) 允许修改t1,并且将其返回, 这样可以避免重新分配对象。   它不能修改t2

1、>>>  seqOp  =  ( lambda  x, y: (x[ 0 +  y, x[ 1 +   1 ))
2、>>>  combOp  =  ( lambda  x, y: (x[ 0 +  y[ 0 ], x[ 1 +  y[ 1 ]))
3、>>>  sc . parallelize([ 1 2 3 4 ],4) . aggregate(( 0 0 ), seqOp, combOp)
(10, 4)
4、>>>  sc . parallelize([ 1234,5 ],3) . aggregate((1,1 ), seqOp, combOp)
(19,9)

依次解释上述函数
1、建立各分区内的聚集函数,又初始值依次与分区内的函数做操作
2、建立各分区间的组合函数,
3、使用aggregate 样例1
4、使用aggregate 样例2

样例1 解释:
分区数 : 4 
0 : 1
1 : 2
2 : 3
3 : 4

利用zerovalue (0,0) 和 seqOp 对各分区进行聚集  : 
0 : (1,1)
1 : (2 , 1)
2 : (3,1)
3:  (4 , 1)

利用 zerovalue和combOp 进行各分区间的聚合 :
(0,0) + (1,1)+ (2,1)+ (3,1)+ (4,1) = (10,4)

样例2 解释:
分区数 : 3
0 : 1,2
1 : 3,4
2 : 5

利用zerovalue (0,0) 和 seqOp 对各分区进行聚集  : 
0 : (1,1)+(1,1)+(2,1)  = (4,3)
1 : (1,1)+(3,1)+(4,1) = (8,3)
2 : (1,1) + (5,1) = (6,2)

利用 zerovalue和combOp 进行各分区间的聚合 :
(1,1) + (4,3) + (8,3) + (6,2) = (19,9)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值