大家好,本文将围绕基于python的数据处理案例展开说明,python数据处理与分析案例是一个很多人都想弄明白的事情,想搞清楚python如何进行数据处理需要先了解以下几个事情。
大家好,小编来为大家解答以下问题,python数据处理案例步骤及其代码,python数据处理与分析教程,今天让我们一起来看看吧!
目录
哈喽~今天学习记录的是数据分析实训小案例。
就用这个案例来好好巩固一下 python 数据分析三剑客Python创意编程比赛作品——名侦探柯南:真相只有一个!python新手代码练习。
前期准备:
- 确认 Jupyter Notebook 环境
- 准备实验数据:http://qn.yuanxinghua.love/%E5%AE%9E%E9%AA%8C.zip
1、实验一
1.1、题目总览
1.2、代码解析
1.求3+6+9+12+15= ?
import numpy as np
s = np.array([3,6,9,12,15])
np.sum(s)
2.生成范围在0~1、服从均匀分布的10行5列的数组
arry = np.random.rand(10,5)
print(arry)
3.创建一个数值范围为0~1,间隔为0.01的数组
arry1 = np.arange(0,1,0.01)
print(arry1)
4.创建100个服从正态分布的随机数
arry2 = np.random.randn(100)
print(arry2)
5.对创建的两个数组进行四则运算
arry1 = np.arange(0,1,0.01)
arry2 = np.random.randn(100)
print("加法",arry1 + arry2)
print("减法",arry1 - arry2)
print("乘法",arry1 * arry2)
print("除法",arry1 / arry2)
6.对创建的随机数进行简单的统计分析
arry2 = np.random.randn(100).reshape(5,20)
print('排序\n',np.sort(arry2))
print('数据去重\n',np.unique(arry2))
print('数组求总和\n',np.sum(arry2))
print('数组纵轴和\n',np.sum(arry2,axis = 0))
print('数组横轴和\n',np.sum(arry2,axis = 1))
print('数组均值\n',np.mean(arry2))
print('数组纵轴均值\n',np.mean(arry2,axis = 0))
print('数组横轴均值\n',np.mean(arry2,axis = 1))
print('数组标准差\n',np.std(arry2))
print('数组纵轴标准差\n',np.std(arry2,axis = 0))
print('数组横轴标准差\n',np.std(arry2,axis = 1))
print('方差\n',np.var(arry2))
print('最小值\n',np.min(arry2))
print('最大值\n',np.max(arry2))
2、实现二
2.1、题目总览
2.2、代码解析
1.读取mtcar数据
import pandas as pd
data = pd.read_csv("D:\桌面\mtcars.csv")
data
截图:
2.查看mtcar数据集的元素的个数、维度、大小等信息,输出表的列名
print('所有值为:\n',data.values)
print('索引:\n',data.index)
print('类型为:\n',data.dtypes)