python数据处理与分析案例,python如何进行数据处理

大家好,本文将围绕基于python的数据处理案例展开说明,python数据处理与分析案例是一个很多人都想弄明白的事情,想搞清楚python如何进行数据处理需要先了解以下几个事情。

大家好,小编来为大家解答以下问题,python数据处理案例步骤及其代码,python数据处理与分析教程,今天让我们一起来看看吧!

目录

1、实验一

1.1、题目总览

1.2、代码解析

2、实现二

2.1、题目总览

2.2、代码解析

3、实验三

3.1、题目总览

3.2、代码解析

4、实验四

3.1、题目总览

3.2、代码解析


哈喽~今天学习记录的是数据分析实训小案例。

就用这个案例来好好巩固一下 python 数据分析三剑客Python创意编程比赛作品——名侦探柯南:真相只有一个!python新手代码练习

前期准备:

  1. 确认 Jupyter Notebook 环境
  2. 准备实验数据:http://qn.yuanxinghua.love/%E5%AE%9E%E9%AA%8C.zip

1、实验一

1.1、题目总览

1.2、代码解析

1.求3+6+9+12+15= ?

import numpy as np 

s = np.array([3,6,9,12,15])
np.sum(s)

 2.生成范围在0~1、服从均匀分布的10行5列的数组

arry =  np.random.rand(10,5)

print(arry)

 3.创建一个数值范围为0~1,间隔为0.01的数组

arry1 = np.arange(0,1,0.01)

print(arry1)

 4.创建100个服从正态分布的随机数

arry2 = np.random.randn(100)

print(arry2)

 5.对创建的两个数组进行四则运算

arry1 = np.arange(0,1,0.01)
arry2 = np.random.randn(100)

print("加法",arry1 + arry2)
print("减法",arry1 - arry2)
print("乘法",arry1 * arry2)
print("除法",arry1 / arry2)

 6.对创建的随机数进行简单的统计分析

arry2 = np.random.randn(100).reshape(5,20)

 
print('排序\n',np.sort(arry2)) 
print('数据去重\n',np.unique(arry2)) 

print('数组求总和\n',np.sum(arry2))
print('数组纵轴和\n',np.sum(arry2,axis = 0))
print('数组横轴和\n',np.sum(arry2,axis = 1))

print('数组均值\n',np.mean(arry2)) 
print('数组纵轴均值\n',np.mean(arry2,axis = 0)) 
print('数组横轴均值\n',np.mean(arry2,axis = 1)) 


print('数组标准差\n',np.std(arry2)) 
print('数组纵轴标准差\n',np.std(arry2,axis = 0)) 
print('数组横轴标准差\n',np.std(arry2,axis = 1)) 

print('方差\n',np.var(arry2)) 
print('最小值\n',np.min(arry2)) 
print('最大值\n',np.max(arry2)) 

2、实现二

2.1、题目总览

2.2、代码解析

1.读取mtcar数据

import pandas as pd 
data = pd.read_csv("D:\桌面\mtcars.csv")
data

截图:

 2.查看mtcar数据集的元素的个数、维度、大小等信息,输出表的列名

print('所有值为:\n',data.values)
print('索引:\n',data.index)
print('类型为:\n',data.dtypes)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值