【无标题】

本文介绍了如何使用牛顿迭代法求解361800的平方根,详细推导了迭代公式并展示了计算过程。此外,文章还探讨了一种基于二分查找的算法来快速找到一维数组中的极大值位置,并给出了Python代码实现。对于大规模数据匹配问题,提出了处理策略。最后,提出了解决找寻特定组合的暴力枚举方法。
摘要由CSDN通过智能技术生成

1.用牛顿迭代法求解 361800 的平方根,并推导牛顿迭代法的求解过程(即牛顿迭代法主要迭代公式的推导)。

求n的平方根可转化为方程 x 2 = n x^2=n x2=n的解,即 f ( x ) = x 2 − n = 0 f(x)=x^2-n=0 f(x)=x2n=0的解

  1. x = x 0 x=x_0 x=x0,判断 f ( x 0 ) f(x_0) f(x0)是否等于0或无限接近于0,如果不是则做过点 ( x 0 , f ( x 0 ) (x_0,f(x_0) (x0,f(x0)的切线,此时切线方程为 y = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) y=f(x_0)+f^{'}(x_0)(x-x_0) y=f(x0)+f(x0)(xx0),与x轴的交点为 x 1 x_1 x1 x 1 = x 0 − f ( x 0 ) / f ′ ( x 0 ) = x 0 − ( x 0 2 − n ) / 2 x 0 = 1 / 2 ( x 0 + n / x 0 ) x_1=x_0 - f(x_0)/f^{'}(x_0)=x_0-(x^2_0-n)/2x_0=1/2(x_0+n/x_0) x1=x0f(x0)/f(x0)=x0(x02n)/2x0=1/2(x0+n/x0)
  2. 同理,取 x = x 1 x=x_1 x=x1,走1的流程,此时,可得迭代公式 x i + 1 = ( x i + n / x i ) / 2 x_{i+1} = (x_i+n/x_i)/2 xi+1=(xi+n/xi)/2
  3. 根据迭代公式不断迭代,知道找到满足条件的x。

其中,f’(x) 表示 f(x) 的导数。我们可以通过对$ f(x)=x^2-361800 $求导得到 f ′ ( x ) = 2 x f'(x)=2x f(x)=2x
因此,我们可以将迭代公式应用于我们的问题,得到:
x 1 = x 0 − ( x 0 2 − 361800 ) / ( 2 ∗ x 0 ) x_1 = x_0 - (x_0^2 - 361800)/(2*x_0) x1=x0(x02361800)/(2x0), 将 x 0 = 600 x_0=600 x0=600 代入该公式,得到: x 1 = 600 − ( 60 0 2 − 361800 ) / ( 2 ∗ 600 ) = 601.5 x_1 = 600 - (600^2 - 361800)/(2*600) = 601.5 x1=600(6002361800)/(2600)=601.5将 x_1=601.5 代入该公式,得到: x 2 = 601.5 − ( 601. 5 2 − 361800 ) / ( 2 ∗ 601.5 ) = 600.0382 x_2 = 601.5 - (601.5^2 - 361800)/(2*601.5) = 600.0382 x2=601.5(601.52361800)/(2601.5)=600.0382重复这个过程,直到收敛到所需精度为止。可以发现,这种方法是非常快速和有效的。

2. 给定一个一维正数数组 A,找出该数组中的极大值位置。请给出快速算法(比较次数最少)。举例:假设数组 A = [7, 5, 6, 5, 4, 3, 5, 7, 1],则极大值点位置为[0, 2, 7]

可以使用一种基于二分查找的算法来快速找到数组 A 中的极大值位置。具体来说,我们可以利用中间位置 mid 将数组 A 分成左右两个子数组,然后比较 A[mid-1]、A[mid] 和 A[mid+1] 三个位置的大小关系,判断出极大值在左半部分、右半部分还是在 mid 位置上,然后递归地在对应的子数组中查找极大值。

下面是具体的实现步骤:

  1. 初始化左右边界 left 和 right,分别为数组 A 的第一个和最后一个位置。

  2. 在一个循环中执行以下操作:

a. 计算中间位置 mid,即 mid = (left + right) // 2。

b. 如果 mid 是数组 A 中的第一个位置或最后一个位置,那么 A[mid] 就是极大值,返回 mid。

c. 否则,比较 A[mid-1]、A[mid] 和 A[mid+1] 三个位置的大小关系:

i. 如果 A[mid-1] < A[mid] > A[mid+1],那么 A[mid] 就是极大值,返回 mid。
ii. 如果 A[mid-1] < A[mid] < A[mid+1],那么极大值在右半部分,将 left 更新为 mid+1。
iii. 否则,极大值在左半部分,将 right 更新为 mid-1。
  1. 如果没有找到极大值,返回一个空列表。

下面是 Python 代码实现:

def find_peak(A):
    n = len(A)
    if n == 0:
        return []
    left, right = 0, n - 1
    while left < right:
        mid = (left + right) // 2
        if mid == 0:
            return [0] if A[0] > A[1] else []
        elif mid == n - 1:
            return [n-1] if A[n-1] > A[n-2] else []
        elif A[mid-1] < A[mid] > A[mid+1]:
            return [mid]
        elif A[mid-1] < A[mid] < A[mid+1]:
            left = mid + 1
        else:
            right = mid - 1
    return []

该算法的时间复杂度为 O(log N),其中 N 是数组 A 的长度。由于每次比较都将数组的大小减半,因此比较次数最多为 log N。

3. 数组 A 包含 10 亿条数据,数组 B 包含 3000 条数据,每条数据为形如"[1.0, 5.4, 0.0, 2.6, 3.0, 2.5, 7.9 ]"的浮点型数组。现在要对数组 A 和数组 B 进行匹配,如果 A[i]和 B[j]有 3 个及其以上的数字相同则认为他们是匹配的,请给出数组A 和数组 B 匹配的方法。(数组 A 中的任意一条数据可以和数组 B 中的 0 个或多个数据匹配,反之亦然)。

可以使用一种基于二分查找的算法来快速找到数组 A 中的极大值位置。具体来说,我们可以利用中间位置 mid 将数组 A 分成左右两个子数组,然后比较 A[mid-1]、A[mid] 和 A[mid+1] 三个位置的大小关系,判断出极大值在左半部分、右半部分还是在 mid 位置上,然后递归地在对应的子数组中查找极大值。
下面是具体的实现步骤:

  1. 初始化左右边界 left 和 right,分别为数组 A 的第一个和最后一个位置。
  2. 在一个循环中执行以下操作:
    a. 计算中间位置 mid,即 mid = (left + right) // 2。

b. 如果 mid 是数组 A 中的第一个位置或最后一个位置,那么 A[mid] 就是极大值,返回 mid。

c. 否则,比较 A[mid-1]、A[mid] 和 A[mid+1] 三个位置的大小关系:

i. 如果 A[mid-1] < A[mid] > A[mid+1],那么 A[mid] 就是极大值,返回 mid。

ii. 如果 A[mid-1] < A[mid] < A[mid+1],那么极大值在右半部分,将 left 更新为 mid+1。

iii. 否则,极大值在左半部分,将 right 更新为 mid-1。
  1. 如果没有找到极大值,返回一个空列表。

下面是 Python 代码实现:

def find_peak(A):
    n = len(A)
    if n == 0:
        return []
    left, right = 0, n - 1
    while left < right:
        mid = (left + right) // 2
        if mid == 0:
            return [0] if A[0] > A[1] else []
        elif mid == n - 1:
            return [n-1] if A[n-1] > A[n-2] else []
        elif A[mid-1] < A[mid] > A[mid+1]:
            return [mid]
        elif A[mid-1] < A[mid] < A[mid+1]:
            left = mid + 1
        else:
            right = mid - 1
    return []

该算法的时间复杂度为 O(log N),其中 N 是数组 A 的长度。由于每次比较都将数组的大小减半,因此比较次数最多为 log N。

4. 小智有 N 张银行卡(卡内余额均以万为单位),请帮小智从中找到 3张卡使得卡内余额总数恰好是 250w。如果有多种不同的组合请给出所有这些可能的组合。

这个问题可以使用暴力枚举法来解决,即枚举所有可能的三张卡,并计算它们的余额总数,判断是否等于 250。
下面是具体的实现步骤:

  1. 对银行卡余额数组进行从小到大排序。
  2. 在三重循环中枚举所有可能的三张卡,并计算它们的余额总数。
  3. 如果余额总数等于 250,则将这三张卡的编号存入结果列表。
    下面是 Python 代码实现:
def find_cards(balance):
    n = len(balance)
    balance.sort()
    res = []
    for i in range(n):
        for j in range(i+1, n):
            for k in range(j+1, n):
                total = balance[i] + balance[j] + balance[k]
                if total == 250:
                    res.append([i, j, k])
    return res
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值