放纵不羁爱自由

열심 하야 돼!

51 nod 1118 机器人走方格 (动态规划)

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。
Input
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000)
Output
输出走法的数量。
Input示例
2 3
Output示例
3

思路:这一道题上来第一反应就是DFS,结果由于递归,会超时,只能过一半的数据,数据超过30就不行了,远远小于题目的要求,于是就想到了DP动态规划。
动归的思路大体是第i,j个点只能从i-1,j过来或者从i,j-1这个点过来,所以到第i,j个点的方法就是第i-1,j和第i,j-1点的加和。

#include<bits/stdc++.h>
#define INF 1000000007
using namespace std;
long long dp[1001][1001];
int n,m;
int main()
{
    cin>>m>>n;
    memset(dp,0,sizeof(dp));
    for(int i=1;i<n;i++)dp[0][i]=1;
    for(int i=1;i<m;i++)dp[i][0]=1;
    for(int i=1;i<m;i++)
    {
        for(int j=1;j<n;j++){
            dp[i][j]=(dp[i-1][j]+dp[i][j-1])%INF;
        }
    }
    cout<<dp[m-1][n-1]<<endl;
    return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a17865569022/article/details/79965154
个人分类: 动态规划
上一篇51 nod1242 斐波那契数列的第N项
下一篇51 nod 1079 中国剩余定理
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭