51 nod 1079 中国剩余定理

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a17865569022/article/details/79966751
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。
Input
第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10)
第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)
Output
输出符合条件的最小的K。数据中所有K均小于10^9。
Input示例
3
2 1
3 2
5 3
Output示例
23

视频讲解中国剩余定理:点击打开链接

#include<bits/stdc++.h>
using namespace std;
long long ans[105],num[105];
long long n;
void del(long long a,long long b,long long &x,long long &y)
{
    if(!b)
    {
        y=0;
        x=1;
        return ;
    }
    else
    {
        del(b,a%b,x,y);
        long long temp=x;
        x=y;
        y=temp-a/b*y;
    }
}
long long china()
{
    long long mul=1,sum=0;
    for(int i=0;i<n;i++) mul*=ans[i];///先求出几个数的积
    for(int i=0;i<n;i++)
    {
        long long a=mul/ans[i],x,y;
        del(a,ans[i],x,y);
        sum=(sum+num[i]*x*a)%mul;
    }
    if(sum<0)
        sum+=mul;
    return sum;
}
int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
        cin>>ans[i]>>num[i];
    cout<<china()<<endl;
    return 0;
}

阅读更多

没有更多推荐了,返回首页