洛谷P1439 最长公共子序列(LCS问题)

DP

题目传送门

一般LCS做法是 O(n2) 的,但是这道题数据范围有1e5,因此必须另辟蹊径

注意到两个数列是n的一个排列,因此考虑把第一个数列中数的位置给记录下来,再根据这个记录第二个数列的位置。然后就转化成了LIS问题,用 O(nlog2n) 来实现即可。

讲的不是很清楚啊。。。具体看代码吧。。。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 100000
using namespace std;
int n,t;
int g[MAXN+5],f[MAXN+5],a[MAXN+5],b[MAXN+5],c[MAXN+5];
inline char readc(){
    static char buf[100000],*l=buf,*r=buf;
    if (l==r) r=(l=buf)+fread(buf,1,100000,stdin);
    if (l==r) return EOF; return *l++;
}
inline int _read(){
    int num=0; char ch=readc();
    while (ch<'0'||ch>'9') ch=readc();
    while (ch>='0'&&ch<='9') { num=num*10+ch-48; ch=readc(); }
    return num;
}
int erfen(int v){
    int l=1,r=t;
    while (l<=r){
        int mid=(l+r)/2;
        if (v>g[mid]) l=mid+1;
        else r=mid-1;
    }
    return l;
}
int main(){
    n=_read();
    for (int i=1;i<=n;i++) a[i]=_read(),f[a[i]]=i;//记录位置
    for (int i=1;i<=n;i++) b[i]=_read(),c[i]=f[b[i]];//根据上次的记录来记录
    g[++t]=c[1];
    for (int i=2;i<=n;i++)//LIS
        if (c[i]>g[t]) g[++t]=c[i];
        else g[erfen(c[i])]=c[i];
    printf("%d\n",t);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值