「BZOJ2500」 幸福的道路 - 树型Dp+ST表+倍增

题目描述

小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光。

他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图。

他们不愿枯燥的每天从同一个地方开始他们的锻炼,所以他们准备给起点标号后顺序地从每个起点开始(第一天从起点一开始,第二天从起点二开始……)。 而且,他们给每条道路定上一个幸福的值。很显然他们每次出发都想走幸福值和最长的路线(即从起点到树上的某一点路径中最长的一条)。

他们不愿再经历之前的大起大落,所以决定连续几天的幸福值波动不能超过M(即一段连续的区间并且区间的最大值最小值之差不超过M)。他们想知道要是这样的话他们最多能连续锻炼多少天(hint:不一定从第一天一直开始连续锻炼)?

现在,他们把这个艰巨的任务交给你了!

输入格式

第一行包含两个整数 N , M N, M N,M.

第二至第N行,每行两个数字 F i , D i F_i , D_i Fi,Di, 第i行表示第 i i i个节点的父亲是 F i F_i Fi,且道路的幸福值是 D i D_i Di.

输出格式

最长的连续锻炼天数.

数据范围

50 % 50\% 50%的数据 N ≤ 1 0 3 N\le 10^3 N103
80 % 80\% 80%的数据 N ≤ 1 0 5 N\le 10^5 N105
100 % 100\% 100%的数据 N ≤ 2 ∗ 1 0 5 , M ≤ 1 0 9 N\le 2*10^5,M\le 10^9 N2105,M109

分析

首先,需要求出从每个点出发的最长路经,可以用两次树型Dp实现。首先求出从每个点往下的最长路和次长路,记为 f [ i ] , g [ i ] f[i],g[i] f[i],g[i],再求出每个点走它的父亲的最长路,记为 h [ i ] h[i] h[i],则从每个点的最长路为 max ⁡ { f [ i ] , g [ i ] } \max\{f[i],g[i]\} max{f[i],g[i]}。记 s o n [ i ] son[i] son[i]为节点 i i i的最长路的儿子,为0则有多个,那么转移如下:
f [ u ] = max ⁡ { f [ v ] + e [ i ] . w e i } g [ u ] = max ⁡ { f [ v ] + e [ i ] . w e i } ( f [ v ] + e [ i ] . w e i ≤ f [ u ] ) h [ u ] = max ⁡ { h [ p r t ] , f [ p r t ]   ( s o n [ p r t ] ! = u   o r   s o n [ p r t ] = = 0 ) , g [ p r t ]   ( s o n [ p r t ] = = u ) } + e [ i ] . w e i f[u]=\max\{f[v]+e[i].wei\}\\ g[u]=\max\{f[v]+e[i].wei\}(f[v]+e[i].wei\le f[u])\\ h[u]=\max\{h[prt],f[prt]\ (son[prt]!=u\ or\ son[prt]==0),g[prt]\ (son[prt]==u)\}+e[i].wei f[u]=max{f[v]+e[i].wei}g[u]=max{f[v]+e[i].wei}(f[v]+e[i].weif[u])h[u]=max{h[prt],f[prt] (son[prt]!=u or son[prt]==0),g[prt] (son[prt]==u)}+e[i].wei

其中,圆括号里为条件, e [ i ] . w e i e[i].wei e[i].wei为对应边的权值, v v v u u u的儿子, p r t prt prt u u u的父亲。

求出从每个点开始的最长路径(记为 a [ x ] a[x] a[x]后,可以用ST表预处理出 F m a x , F m i n Fmax,Fmin Fmax,Fmin数组,方便求区间最小最大值。先考录朴素做法:对于每个 i ∈ [ 1 , n ] i\in [1,n] i[1,n],求出它能扩展的最大的 p p p满足它们之间的最大值与最小值的差小于等于 M M M。然后因为最值满足区间加法,故可以用倍增优化这个寻找的过程。令 j = log ⁡ ( n − i + 1 ) , p = i j=\log (n-i+1),p=i j=log(ni+1),p=i,记录一个整个区间的最值,记为 M a x , M i n Max,Min Max,Min,初始值为 a [ i ] a[i] a[i],查询区间 [ p , p + 2 j − 1 ] [p,p+2^j-1] [p,p+2j1]的最值,与记录的整个区间最值合并,若此时它们的差仍然小于等于 M M M,则令 p = p + 2 j p=p+2^j p=p+2j,否则不变,每次 j − − j-- j,一直循环下去,知道 j = = − 1 j==-1 j==1跳出循环,此时从 i i i开始扩展的最长区间为 i − p i-p ip,更新答案。

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),没有单调队列 O ( n ) O(n) O(n)的做法快,但对于 n ≤ 2 ∗ 1 0 5 n\le 2*10^5 n2105来说已经足够。

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <queue>
using namespace std;
const int N=200004;
const int INF=0x3f3f3f3f;
struct Edge {
	int to,nxt,wei;
}e[N<<1];
int head[N],cnt,lg[N];
int n,m,h[N],ans;
int Fmin[N][24],Fmax[N][24];
int son[N];
int f[N],g[N];
void Add_Edge(int x,int y,int z) {
	e[++cnt]=(Edge){y,head[x],z};
	head[x]=cnt;
}
void Dfs(int x,int fa) {
	for (int i=head[x];i;i=e[i].nxt) {
		int y=e[i].to;
		if (y==fa) continue;
		Dfs(y,x);
		if (f[y]+e[i].wei>f[x]) {//更新最长路和次长路 
			g[x]=f[x];
			son[x]=y;
			f[x]=f[y]+e[i].wei;
		} else if (f[y]+e[i].wei==f[x]) {//有相等的,就说明有多个最长路,更新次长路与son 
			g[x]=f[x];
			son[x]=0;
		} else if (f[y]+e[i].wei>g[x]) g[x]=f[y]+e[i].wei;//更新次长路 
	}
}
void Dfs2(int x,int fa) {
	for (int i=head[x];i;i=e[i].nxt) {
		int y=e[i].to;
		if (y==fa) continue;
		if (!son[x]||son[x]!=y) h[y]=max(h[x],f[x])+e[i].wei;//走父亲的h[]与父亲的最长路 
		else h[y]=max(h[x],g[x])+e[i].wei;//走父亲的次长路 
		Dfs2(y,x);
	}
}
void getM(int l,int r,int &maxx,int &minn) {//ST表查询 
	int k=lg[r-l+1];
	maxx=max(Fmax[l][k],Fmax[r-(1<<k)+1][k]);
	minn=min(Fmin[l][k],Fmin[r-(1<<k)+1][k]);
}
int main() {
	scanf("%d%d",&n,&m);
	for (int i=1;i<n;i++) {
		int fa,wei;
		scanf("%d%d",&fa,&wei);
		Add_Edge(fa,i+1,wei);
		Add_Edge(i+1,fa,wei);
	}
	Dfs(1,0);
	Dfs2(1,0);
	for (int i=1;i<=n;i++) {
		Fmin[i][0]=Fmax[i][0]=h[i]=max(h[i],f[i]);
	}
	for (int j=1;(1<<j)<=n;j++)//ST表预处理 
		for (int i=1;i+(1<<j)-1<=n;i++) {
			Fmax[i][j]=max(Fmax[i][j-1],Fmax[i+(1<<(j-1))][j-1]);
			Fmin[i][j]=min(Fmin[i][j-1],Fmin[i+(1<<(j-1))][j-1]);
		}
	lg[0]=-1;
	for (int i=1;i<=n;i++)
		lg[i]=lg[i>>1]+1;
	for (int i=1;i<=n;i++) {//枚举起点 
		int p=i,maxx=h[i],minn=h[i];
		for (int j=lg[n-i+1];j>=0;j--) {//倍增找最多能扩展到的点 
			int tmax,tmin;
			getM(p,p+(1<<j)-1,tmax,tmin);
			tmax=max(tmax,maxx);
			tmin=min(tmin,minn);
			if (tmax-tmin<=m) {//满足条件,向前跳2^j步 
				maxx=tmax;
				minn=tmin;
				p=p+(1<<j);
			}
		}
		ans=max(ans,p-i);//更新答案 
	}
	printf("%d",ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值