POJ2976 Dropping tests

这篇博客介绍了POJ2976题目的解题思路,主要涉及01分数规划的运用。通过二分法寻找最大值,将a[i]-r*b[i]进行排序,并选取n-k个满足不等式的元素,从而达到最大化目标。
摘要由CSDN通过智能技术生成

01分数规划

题目传送门

题目大意:给你两串数 a[i],b[i] a [ i ] , b [ i ] ,选 nk n − k 个数使得 a[i]b[i] ∑ a [ i ] ∑ b [ i ] 最大。

这道题就是最裸的01分数规划了。01分数规划就是求 max/min(a[i]xib[i]xi) max / min ( ∑ a [ i ] ∗ x i ∑ b [ i ] ∗ x i ) ,其中 xi{0,1} x i ∈ { 0 , 1 }

二分一个答案 r r ,即a[i]b[i]r,化简后得 a[i]rb[i]0 ∑ a [ i ] − r ∑ b [ i ] ≥ 0

那么我们把 a[i]rb[i] a [ i ] − r ∗ b [ i ] 排序,然后取前 nk n − k 个看看是不是 0 ≥ 0 就行了。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 1005
#define eps 1e-8
using namespace std;
typedef double DB;
int n,k,a[N],b[N];
DB s[N],sum;
inline bool pd(DB x){
    for (int i=1;i<=n;i++) s[i]=a[i]-x*b[i];
    sort(s+1,s+n+1),sum=0;
    for (int i=k+1;i<=n;i++) sum+=s[i];
    return sum>-eps;
}
int main(){
    while (~scanf("%d%d",&n,&k)&&(n||k)){
        for (int i=1;i<=n;i++) scanf("%d",&a[i]);
        for (int i=1;i<=n;i++) scanf("%d",&b[i]);
        DB l=0,r=1,mid;
        while (r-l>-eps)
            if (pd(mid=(l+r)/2)) l=mid+eps*100;
            else r=mid-eps*100;
        printf("%.0f\n",100*l);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值