01分数规划
题目大意:给你两串数 a[i],b[i] a [ i ] , b [ i ] ,选 n−k n − k 个数使得 ∑a[i]∑b[i] ∑ a [ i ] ∑ b [ i ] 最大。
这道题就是最裸的01分数规划了。01分数规划就是求 max/min(∑a[i]∗xi∑b[i]∗xi) max / min ( ∑ a [ i ] ∗ x i ∑ b [ i ] ∗ x i ) ,其中 xi∈{0,1} x i ∈ { 0 , 1 }
二分一个答案 r r ,即,化简后得 ∑a[i]−r∑b[i]≥0 ∑ a [ i ] − r ∑ b [ i ] ≥ 0
那么我们把 a[i]−r∗b[i] a [ i ] − r ∗ b [ i ] 排序,然后取前 n−k n − k 个看看是不是 ≥0 ≥ 0 就行了。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 1005
#define eps 1e-8
using namespace std;
typedef double DB;
int n,k,a[N],b[N];
DB s[N],sum;
inline bool pd(DB x){
for (int i=1;i<=n;i++) s[i]=a[i]-x*b[i];
sort(s+1,s+n+1),sum=0;
for (int i=k+1;i<=n;i++) sum+=s[i];
return sum>-eps;
}
int main(){
while (~scanf("%d%d",&n,&k)&&(n||k)){
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
for (int i=1;i<=n;i++) scanf("%d",&b[i]);
DB l=0,r=1,mid;
while (r-l>-eps)
if (pd(mid=(l+r)/2)) l=mid+eps*100;
else r=mid-eps*100;
printf("%.0f\n",100*l);
}
}