将十进制数N转换R进制R为 2 到 16 之间的整数的算法

将十进制数== N 转换为 R 进制( R ==为 2 到 16 之间的整数)的算法如下:

算法步骤:

  1. 初始化:

    • 创建一个空列表或字符串 digits 用于存储转换后的每一位数字。
    • 定义数字字符表 digit_chars = "0123456789ABCDEF"(支持 2 到 16 进制)。
  2. 处理 ( N = 0 ) 的特殊情况:

    • 如果 ( N = 0 ),直接返回 "0"
  3. 处理负数:

    • 如果 ( N < 0 ),记录负号,并将 ( N ) 取绝对值:
      is_negative = N < 0
      N = abs(N)
      
  4. 循环除以 ( R ) 并取余数:

    • 当 ( N > 0 ) 时,重复以下步骤:
      • 计算余数:remainder = N % R
      • 将余数对应的字符(从 digit_chars 中获取)添加到 digits 的开头。
      • 更新 ( N ):N = N // R(整除)。
  5. 处理负号:

    • 如果原始数为负数,在结果前添加负号 -
  6. 返回结果:

    • digits 拼接为字符串并返回。

示例代码(Python):

def decimal_to_base(N: int, R: int) -> str:
    if R < 2 or R > 16:
        raise ValueError("R must be between 2 and 16")
    
    if N == 0:
        return "0"
    
    is_negative = N < 0
    N = abs(N)
    digit_chars = "0123456789ABCDEF"
    digits = []
    
    while N > 0:
        remainder = N % R
        digits.append(digit_chars[remainder])
        N = N // R
    
    if is_negative:
        digits.append('-')
    
    return ''.join(reversed(digits))

# 示例
print(decimal_to_base(42, 2))   # 输出: "101010"(42 的二进制)
print(decimal_to_base(255, 16)) # 输出: "FF"(255 的十六进制)
print(decimal_to_base(-10, 3))  # 输出: "-101"(-10 的三进制)

注意事项:

  1. 进制范围R需满足 ==2 ≤ R ≤ 16 ==。超出范围时需扩展 digit_chars
  2. 逆序拼接:余数是从低位到高位计算的,因此结果需反转。
  3. 零的处理:单独判断 ( N = 0 ) 的情况。

如果 == R == 的范围是 1 到 10(包括 1 和 10),我们需要调整算法,因为:

  • ** R = 1 ** 时,进制无意义(因为所有数都会表示成 N1 相连,例如 510 = 11111_1 。
  • ** R = 10** 时,结果就是原数本身(十进制)。

调整后的算法步骤:

  1. 处理 R = 1 的特殊情况
    • 直接返回 N'1' 组成的字符串(例如 510 = 11111_1 )。
  2. **处理 R = 10 **:
    • 直接返回 == N == 的字符串形式(无需转换)。
  3. 其他情况( 2 ≤ R ≤ 9 )
    • 使用常规的除R取余法,逆序拼接余数。

Python 实现

def decimal_to_base(N: int, R: int) -> str:
    if R == 1:
        return '1' * N  # 如 5 → "11111"
    elif R == 10:
        return str(N)   # 直接返回十进制
    elif 2 <= R <= 9:
        if N == 0:
            return "0"
        
        is_negative = N < 0
        N = abs(N)
        digits = []
        
        while N > 0:
            remainder = N % R
            digits.append(str(remainder))
            N = N // R
        
        if is_negative:
            digits.append('-')
        
        return ''.join(reversed(digits))
    else:
        raise ValueError("R must be between 1 and 10")

# 测试
print(decimal_to_base(5, 1))   # 输出: "11111"(5 的 1 进制)
print(decimal_to_base(42, 2))  # 输出: "101010"(42 的二进制)
print(decimal_to_base(42, 10)) # 输出: "42"(十进制不变)
print(decimal_to_base(-8, 3))  # 输出: "-22"(-8 的三进制)

关键点

  1. ** R = 1 ** 时,返回 N'1'(数学上无意义,但符合题意)。
  2. ** R = 10 ** 时,直接返回原数字符串。
  3. ** 2 ≤ R ≤ 9 ** 时,使用标准进制转换方法(除 == R == 取余,逆序拼接)。
  4. 负数处理:先取绝对值,最后加负号。

这个算法适用于 ( R \in {1, 2, \dots, 10} ),并正确处理了所有边界情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小玗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值