/**
* Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint
* directory set with `SparkContext#setCheckpointDir` and all references to its parent
* RDDs will be removed. This function must be called before any job has been
* executed on this RDD. It is strongly recommended that this RDD is persisted in
* memory, otherwise saving it on a file will require recomputation.
*//**
*将此RDD标记为检查点。 它将被保存到使用`SparkContext#setCheckpointDir`设置的检查点目录中的一个文件中,并且所有对其父项的引用
* RDD将被删除。 这个功能必须在任何工作之前被调用
*在此RDD上执行。 强烈建议将此RDD保存在内存中,否则将其保存在文件中将需要重新计算。
*/
def checkpoint(): Unit = RDDCheckpointData.synchronized {
// NOTE: we use a global lock here due to complexities downstream with ensuring// children RDD partitions point to the correct parent partitions. In the future// we should revisit this consideration.if (context.checkpointDir.isEmpty) {
thrownew SparkException("Checkpoint directory has not been set in the SparkContext")
} elseif (checkpointData.isEmpty) {
checkpointData = Some(new ReliableRDDCheckpointData(this))
}
}
System.setProperty("hadoop.home.dir", "G:\\hadoop-common-2.2.0-bin")
val conf = new SparkConf().setAppName("WC").setMaster("local[4]")
val sc = new SparkContext(conf)
valvalue = sc.parallelize(Array("")).cache()
sc.setCheckpointDir("hdfs://node1:9000/checkpoint/")
value.checkpoint()