本文主要简述spark checkpoint机制,快速把握checkpoint机制的来龙去脉,关于源码方面可以看参考文章。
###1、Spark core的checkpoint
####1)为什么checkpoint?
分布式计算中难免因为网络,存储等原因出现计算失败的情况,RDD中的lineage信息常用来在task失败后重计算使用,为了防止计算失败后从头开始计算造成的大量开销,RDD会checkpoint计算过程的信息,这样作业失败后从checkpoing点重新计算即可,提高效率。
####2)什么时候写checkpoint数据?
- 当RDD的action算子触发计算结束后会执行checkpoint。
- 在spark streaming中每generate一个batch的RDD也会触发checkpoint操作。
####3)什么时候读checkpoint数据?
task计算失败的时候会从checkpoint读取数据进行计算。
####4)checkpoint具体实现有哪些?
其实现分两种:
- LocalRDDCheckpointData:临时存储在本地executor的磁盘和内存上(不能仅使用内存,因为内存的eviction机制可能造成data loss)。该实现的特点是比较快,适合lineage信息需要经常被删除的场景(如GraphX),可容忍executor挂掉。
- ReliableRDDCheckpointData:存储在外部可靠存储(如hdfs),可以达到容忍driver 挂掉情况。虽然效率没有存储本地高,但是容错级别最好。
如果代码中没有设

本文详细介绍了Spark核心的checkpoint机制,包括为何需要checkpoint、何时触发写入、何时读取以及两种具体的实现方式:LocalRDDCheckpointData和ReliableRDDCheckpointData。在Spark Streaming中,每个batch间隔都会触发checkpoint操作。此外,还提及了DirectKafkaInputDStreamCheckpointData在checkpoint中的特殊处理。
最低0.47元/天 解锁文章
1693

被折叠的 条评论
为什么被折叠?



