二叉树的基本概念

本文深入探讨了二叉树的概念,首先从递归定义出发,详细阐述了二叉树的特性。接着,我们转向二叉树的存储结构,包括常见的链式存储和数组存储,并讨论了插入、删除、查找等基本操作的实现方法。
摘要由CSDN通过智能技术生成


一、二叉树的递归定义

1、要么二叉树没有根结点,是一颗空树。
2、要么二叉树由根结点、左子树、右子树组成,且左子树和右子树都为二叉树。

二、二叉树的存储结构与基本操作

1、二叉树的存储结构:
       一般来说,二叉树使用链表来定义。和普通链表的区别是,由于二叉树每个结点有两条出边,因此指针域变成了两个-------分别是指向左子树的根结点地址和右子树的根结点地址。如果某个子树不存在,则指向NULL,其他地方和普通链表完全相同,因此又把这种链表叫做二叉链表,其定义方式如下:
struct node{
	typename data;     //数据域 
	node* lchild;      //指向左子树根结点的指针 
	node* rchild;      //指向右子树根结点的指针 
}; 
由于二叉树建树前根结点不存在,因此其地址一般设为NULL:
node* root = NULL;
如果需要新建结点(例如往二叉树中插入结点的时候),就可以使用下面的函数:
node* newNode(int v){
	node* Node = new node;      //申请一个node类型变量的地址空间 
	Node->data = v;             //结点权值为v 
	Node->lchild = Node->rchild = NULL;   //初始状态下没有左右孩子 
	return Node;          //返回新建结点地址 
} 
2、二叉树的查找、修改:
       查找操作是指给定数据域的条件下,在二叉树中找到所有数据域为给定数据域的结点,并将它们的数据域修改为给定的数据域。
void search(node* root, int x, int newdata){
	if(root == NULL){
		return;          //空树(递归边界) 
	}
	if(root->data == x){        //找到数据域为x的结点,把它修改为newdata 
		root->data = newdata;
	}
	search(root->lchild, x, newdata);    //往左子树搜索x(递归式) 
	search(root->rchild, x, newdata);   //往右子树搜索x(递归式) 
} 
3、二叉树结点的插入:
void insert(node* &root, int x){
	if(root == NULL){
		root = newNode(x);
		return;
	}
	if(由二叉树的性质,x应该插在左子树){
		insert(root->lchild, x);     
	} 
	else{
		insert(root->rchild, x);
	}
} 
4、二叉树的创建:
node* create(int data[], int n){
	node* root = NULL;
	for(int i = 0; i < n; i++){
		insert(root, data[i]);
	}
	return root;
} 







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值