YOLOv5最简推理分割代码

目录结构如下:

在这里插入图片描述

以加载torchscript模型文件为例,如下为Predict.py代码,utils.py中代码则从原始YOLOV5代码中拷贝,即Predict.py中用到的代码块,其中对部分用不到的代码进行了删减:

import cv2
import numpy as np
import torch

from utils.utils import letterbox, non_max_suppression, Annotator, scale_boxes, process_mask, colors
from pathlib import Path
# 路径设置
image_path = './data/1.jpg'
output_path = './runs/'
onnx_model_path = './weights/best.torchscript'

# 类别名及绘图颜色设置
names = ['crack']

# 硬件选择,优先选用GPU
device = torch.device('cuda:0')
# 1、加载模型,模型半精度
model = torch.jit.load(onnx_model_path, map_location=device)
model.half()  # 此处用cpu推理的话会报错,若用cpu,就把全局的half()删掉
# 2、图像预处理,图像半精度
img0 = cv2.imread(image_path)
img = letterbox(img0, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32)[0]  # padded resize
img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
img = np.expand_dims(img, 0)          # 由于没有设置batchsize,用的单张图片,所以需要增大一个维度
img = np.ascontiguousarray(img)       # contiguous,换为内存连续存储的数组,使得运行速度更快

# 3、加载图像到GPU
img = torch.from_numpy(img).float().to(device)
img = img.half()  # fp16/32 img.float()
img /= 255  # 0 - 255 to 0.0 - 1.0

# 4、模型推理
pred, proto = model(img)
# 5、NMS
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45, nm=32)
# 6、结果原图绘制
for i, det in enumerate(pred):
    annotator = Annotator(img0, line_width=3, example=str(names))
    if len(det):
        masks = process_mask(proto[i], det[:, 6:], det[:, :4], img.shape[2:], upsample=True)  # HWC
        det[:, :4] = scale_boxes(img.shape[2:], det[:, :4], img0.shape).round()  # rescale boxes to im0 size

        annotator.masks(
            masks,
            colors=[colors(x, True) for x in det[:, 5]],
            im_gpu=img[0])
        for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
            c = int(cls)  # integer class
            label = f'{names[c]} {conf:.2f}'
            annotator.box_label(xyxy, label, color=colors(c, True))
    # Stream results
    im0 = annotator.result()
    save_image_name = Path(image_path).name
    cv2.imwrite(output_path + save_image_name, im0)

if __name__ == '__main__':
    print('hello')


以下是使用yolov5-master库进行实例分割推理的简化代码示例: 1. 导入所需库和模块: ```python import torch from PIL import Image from yolov5.models.experimental import attempt_load from yolov5.utils.general import non_max_suppression, scale_coords from yolov5.utils.datasets import letterbox from yolov5.utils.plots import plot_one_box device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ``` 2. 定义推理函数: ```python def instance_segmentation(image_path): # 加载模型 model_path = 'path/to/your/model.pt' model = attempt_load(model_path, map_location=device) # 加载模型 model.to(device).eval() # 读取图像 image = Image.open(image_path) original_image = image.copy() image = letterbox(image, new_shape=model.imgsz)[0] # 转换为Tensor image = torch.from_numpy(image.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0).to(device) # 进行推理 pred = model(image)[0] pred = non_max_suppression(pred, conf_thres=0.3, iou_thres=0.45) # 处理预测结果 for det in pred[0]: if det is not None: det[:, :4] = scale_coords(image.shape[2:], det[:, :4], original_image.size).round() # 绘制边框和标签 for *xyxy, conf, cls in reversed(det): plot_one_box(xyxy, original_image, label=f'{conf:.2f}', color=(0, 255, 0), line_thickness=3) # 显示结果 original_image.show() ``` 3. 调用推理函数: ```python if __name__ == '__main__': image_path = 'path/to/your/image.jpg' instance_segmentation(image_path) ``` 请确保已将模型文件和待推理的图像文件路径正确设置,并对代码进行适当的调整以满足自己的需求。这是一个简化的示例代码,你还可以根据具体情况对其进行修改和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鹏要高飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值