“doc_count” : 0 —这个区间没有文档
},
…
控制空桶是否返回
在上面的返回值中,第三个桶中没有文档,在有的业务场景中,我们不需要没有数据的桶,此时可以用min_doc_count参数来控制,如果min_doc_count等于2,表示桶中最少有两条记录才会出现在返回内容中,如下所示,min_doc_count如果等于1,那么空桶就不会被es返回了:
GET /cars/transactions/_search
{
“size”:0,
“aggs”:{
“price”:{
“histogram”: {
“field”: “price”,
“interval”: 20000,
“min_doc_count”: 1
}
}
}
}
返回值如下所示,没有文档的桶不再出现:
{
“took” : 16,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 8,
“max_score” : 0.0,
“hits” : [ ]
},
“aggregations” : {
“price” : {
“buckets” : [
{
“key” : 0.0,
“doc_count” : 3
},
{
“key” : 20000.0,
“doc_count” : 4
},
{
“key” : 80000.0,
“doc_count” : 1
}
]
}
}
}
histogram桶加metrics
- 上面的例子返回结果只有每个桶内的文档数,也可以加入metrics对桶中的数据进行处理,例如计算每个区间内的最高价、最低价、平均售价,可以加入max、min、avg参数,如下:
GET /cars/transactions/_search
{
“size”:0, —令返回值的hits对象为空
“aggs”:{ —聚合命令
“price”:{ —聚合字段名称
“histogram”: { —桶类型
“field”: “price”, —指定price字段的值作为判断条件
“interval”: 20000 —每个桶负责的区间大小为20000
},
“aggs”: { —表示对桶内数据做metrics
“max_price”: { —指定metrics处理结果的字段名
“max”:{ —metrics类型为max
“field”: “price” —指定取price字段的值做最大值比较
}
},
“min_price”: { —指定metrics处理结果的字段名
“min”:{ —metrics类型为min
“field”: “price” —指定取price字段的值做最小值比较
}
},
“avg_price”: { —指定metrics处理结果的字段名
“avg”:{ —metrics类型为avg
“field”: “price” —指定取price字段的值计算平均值
}
}
}
}
}
}
- es返回数据和说明如下,可见每个桶中的文档都做了三种metrics处理:
{
“took” : 17,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 8,
“max_score” : 0.0,
“hits” : [ ]
},
“aggregations” : { —聚合结果
“price” : { —请求参数中指定的名称
“buckets” : [ —price桶的数据在此数组中
{
“key” : 0.0, —第一个区间[0-19999],0.0是起始值
“doc_count” : 3, —这个区间有三条记录(price值分别是10000、12000、15000)
“max_price” : { —指定的metrics结果名称
“value” : 15000.0 —桶中有三个文档,price字段的最大值是15000
},
“min_price” : {
“value” : 10000.0 —桶中有三个文档,price字段的最小值是10000
},
“avg_price” : {
“value” : 12333.333333333334 —桶中有三个文档,price字段的平均值是12333.333333333334
}
},
…
时间区间的桶(date_histogram)
- 按照时间区间聚合也是常用的功能,例如在ELK上查询日志,通常都是按照时间来分段的,如下图:
-
histogram桶可以实现按照时间分段么?如果用毫秒数来处理,似乎是可以的,但是对年月日的处理就力不从心了,常见的时间区间处理,用date_histogram桶即可满足要求;
-
下面就是date_histogram桶的用法:每月销售多少台汽车:
GET /cars/transactions/_search
{
“size”: 0, —令返回值的hits对象为空
“aggs”: { —聚合命令
“sales”: { —聚合字段名称
“date_histogram”: { —桶类型
“field”: “sold”, —用sold字段的值作进行时间区间判断
“interval”: “month”, —间隔单位是月
“format”: “yyyy-MM-dd” —返回的数据中,时间字段格式
},
“aggs”: { —表示对桶内数据做metrics
“max_price”: { —指定metrics处理结果的字段名
“max”:{ —metrics类型为max
“field”: “price” —指定取price字段的值做最大值比较
}
},
“min_price”: { —指定metrics处理结果的字段名
“min”:{ —metrics类型为min
“field”: “price” —指定取price字段的值做最小值比较
}
}
}
}
}
}
- es返回数据如下,篇幅所限因此略去了头部和尾部的一些信息,只看关键的:
“aggregations” : { —聚合结果
“sales” : { —请求参数中指定的名称
“buckets” : [ —sales桶的数据在此数组中
{
“key_as_string” : “2014-01-01”, —请求的format参数指定了key的格式
“key” : 1388534400000, —真正的时间字段
“doc_count” : 1, —2014年1月份的文档数量
“max_price” : { —2014年1月的文档做了metrics类型为max的处理后,结果在此
“value” : 80000.0 —2014年1月的文档中,price字段的最大值
},
“min_price” : { —2014年1月的文档做了metrics类型为min的处理后,结果在此
“value” : 80000.0 —2014年1月的文档中,price字段的最大值
}
},
{
“key_as_string” : “2014-02-01”,
“key” : 1391212800000,
“doc_count” : 1,
“max_price” : {
“value” : 25000.0
},
“min_price” : {
“value” : 25000.0
}
},
…
- 上面的请求是以一个月作为区间的,如果想以其他时间单位作为区间又该怎么做呢?例如90天,把interval字段写成90d即可,其他粒度的时间间隔写法如下表:
| 表达式 | 含义 |
| — | — |
| 1y | 一年(数量只能是1,例如2y不合法) |
| 1q | 一个季度(数量只能是1,例如2q不合法) |
| 1M | 一个月(数量只能是1,例如2M不合法,注意区分大写,M表示月,m表示分钟) |
| 1w | 一周(数量只能是1,例如2w不合法) |
| 2d | 两天(数量可以是整数类型) |
| 3h | 三个小时(数量可以是整数类型) |
| 4m | 四分钟(数量可以是整数类型,注意区分大写,M表示月,m表示分钟) |
| 5s | 五秒钟(数量可以是整数类型) |
注意:年、季度、月、周都的数量只能是1,其他粒度的数量可以是整数;
例如以90天作为区间来聚合,请求参数如下:
GET /cars/transactions/_search
{
“size”: 0,
“aggs”: {
“sales”: {
“date_histogram”: {
“field”: “sold”,
“interval”: “90d”, -------表示以90天作为间隔
“format”: “yyyy-MM-dd”
},
“aggs”: {
“max_price”: {
“max”:{
“field”: “price”
}
},
“min_price”: {
“min”:{
“field”: “price”
}
}
}
}
}
}
date_histogram的空桶处理
date_histogram也支持min_doc_count参数,和histogram桶的用法一样,对于下面的请求,es的响应中不会有空桶:
GET /cars/transactions/_search
{
“size”: 0,
“aggs”: {
“sales”: {
“date_histogram”: {
“field”: “sold”,
“interval”: “1M”,
“format”: “yyyy-MM-dd”,
“min_doc_count”: 1
}
}
}
}
扩展实战
-
本篇的最后,来做一个略为复杂的聚合操作:按季度展示每个汽车品牌的销售总额;
-
显然,操作的第一步是按照时间区间做聚合,然后在每个桶中,将文档按照品牌做第二次聚合,第二次聚合的结果也可以理解为多个桶,每个桶中的文档,是某个平台在某个季度的销售总额;
-
请求如下:
GET /cars/transactions/_search
{
“size”: 0, —令返回值的hits对象为空
“aggs”: { —聚合命令
“sales”: { —聚合字段名称
“date_histogram”: { —桶类型为时间区间
“field”: “sold”, —指定sold字段的值作为判断条件
“interval”: “1q”, —区间间隔为1季度
“format”: “yyyy-MM-dd”, —返回的桶的key,被格式化时的格式
“min_doc_count”: 1 —空桶不返回
},
“aggs”: { —第二层桶
“per_make_sum”: { —聚合字段名称
“terms”: { —桶类型为terms
“field”: “make” —按照make字段聚合
},
“aggs”: { —第二层桶的metrics
“sum_price”: { —聚合字段名称
“sum”: { —metrics处理,累加
“field”: “price” —取price字段的值累加
}
}
}
}
}
最后
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Java开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
}
}
}
最后
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
[外链图片转存中…(img-6AE5O88S-1715671320325)]
[外链图片转存中…(img-Mww3tOQ8-1715671320326)]
[外链图片转存中…(img-AodMYvbE-1715671320326)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Java开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!