数据不均衡处理一:数据重采样

数据不均衡是指在数据集中不同类别的样本数量差异较大,这可能会导致模型在训练和预测过程中对少数类样本的识别能力不足。数据重采样是一种常用的处理方法,可以通过增加少数类样本或减少多数类样本来平衡数据集,从而提高模型的性能。

常用的数据重采样方法有:过采样,欠采样和混合采样三种

目录

一:过采样(Oversampling)

二、欠采样(Undersampling)

三、混合采样(Synthetic Sampling)

一:过采样(Oversampling)
<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值