📢 搭建思路
1. 搭建基础模型
两张图片:一张线稿图,一张风格参考图;
加载模型,包括加载器和采样器;
2. 两个核心应用
IP Adapter,输入参考图,通过模型管道给到采样器;
ControlNet,对线稿图的约束,作为一个条件给到采样器;
文末有所用到的sdxl模型和lora模型以及工作流的百度网盘链接。
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

1**/** 加载两张图片,分别作为线稿图和风格参考图,并将其处理成1024×1024的分辨率,最后将其作为设置为设置点,以减少整个工作流的连线,再获取一下图片的尺寸,图片处理部分就完成了;
2**/** 加载加载器,这里用的是A111简易加载器,分别选择sdxl模型和lora模型,并将分辨率调整为输入;
完整工作流:
3**/** 加载采样器,我用的是简易K采样器,将节点束进行连接,并输出一个预览图;
为了后面便于输出,可以将节点束打散;
为了减少连线,将打散后的节点束进行全局化处理;
4**/** 搭建IP Adapter来将风格图片处理后输出给采样器;将风格参考图通过clip视觉处理后,传递给正向图,权重类型选择风格;
5**/** 搭建ControlNet,将线稿图作为约束条件,输出给采样器;图形输入前,需要进行一下图形反转,将白底黑线的线稿图转成黑底白线;
6**/** 将输出结果传递给采样器;
7**/** 调节关键参数;
正向提示词:1girl, best quality,detailed,Professional photography,HD,8k
负向提示词:text,watermark,nsfw,
权重和开始结束时间,可以根据自己的喜好来调节;
好了,到这里我们的工作流就搭建完毕了,调整一下位置,看成果。
写在最后
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

若有侵权,请联系删除