vivo2021千镜杯-移动安全-WP

文章描述了一次Vivo组织的千镜杯解密竞赛,参与者使用工具如jadx进行分析,涉及到的解密技术包括异或和AES。文章中展示了如何通过异或操作解码初步加密的数据,并进一步利用AES-CBC模式解密得到明文信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

vivo2021千镜杯

没想到已经快2年了时光荏苒 

mob1:

jadx 打开就给flag

mob2

就是异或,动调出异或的值就行

import base64
s="3y7/5zbYyaDBe/eYNWspKr+zdhPgR14H"
s=base64.b64decode(s)
print(s)
enc=[i for i in s]
print(len(s))
xorkey=[0x27,0xfa,0x5d,0x78,0x20,0x78,0x25,0x46,0x5d,0xd0,0x4c,0x25,0x95,0xbb,0xc8,0x7,0x4b,0xd,0x5f,0xc1,0x3d,0xed,0xe4,0x39]
RC4_xorkey=[0x8f,0xb1,0xce,0xfc,0x79,0xcd,0x89,0xc6,0xe8,0xc4,0x9b,0xce,0xc5,0xb3,0x8d,0x42,0x82,0xdb,0x5b,0xf3,0xdd,0xaa,0xba,0x3e]

for i in range(len(enc)):
    enc[i]^=RC4_xorkey[i]^xorkey[i]
print(bytes(enc))
b'welcome to seclover!\x00\x00\x00\x00'

mob4

打开so发现函数名称被混淆了 

找到加密逻辑

根据aes的s盒推测是aes

key=secloverneedyou.

密文对比

 

from Crypto.Cipher import AES
key='secloverneedyou.'
enc=[0xf9,0xde,0xff,0xff,0xbf,0x42,0xed,0x90,0xcb,0x8e,0xad,0x52,0xca,0xfc,0x92,0xc1,0xe9,0x27,0x9c,0x2a,0x57,0x28,0xcc,0x47,0x57,0x5f,0x90,0x7b,0x03,0xac,0x18,0x56,]
aes = AES.new(key.encode(),AES.MODE_CBC,key.encode()) #创建一个aes对象
den_text = aes.decrypt(bytes(enc)) # 解密密文
print(den_text)
#b'vivo-welcome-you\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10\x10'

 

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值