对汽车域融合、域间通信、网关的理解

本文探讨了汽车座舱域的融合,包括Tbox、网关、仪表显示、GPU、存储、无线通信模块和调制解调器的集成。介绍了主处理器AMD Ryzen以及GPU、内存、存储的配置。此外,还分析了智驾域与座舱域间的千兆以太网通信,以及车身网关处理器的角色,强调了域控制器融合在减少模块和线束复杂性方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  座舱域-域融合理解:

        例如座舱域可融合集成Tbox(可做成可插接板),网关(以太网交换芯片,can/eth 传递车身信息给座舱)、仪表显示、中控显示(LVDS信号传输,其传输速度可以达到数千兆)、音频功放(加DSP降噪)、GPU ePCI卡槽、天线(wifi bt tbox fm)、emmc/nand ufs/ssd存储等。

        如座舱域一些组成配置:

        主处理器: AMD Ryzen YE180FC3T4MFG(4核45瓦Ryzen Embedded)每核512 KB L2 缓存,4 MB L3 缓存。
        GPU: 215-130000026 的 AMD Radeon,类似于 Radeon Pro W6600。GPU是显示交互渲染的关键,优秀的UI/UX交互显示离不开高性能的GPU。
        内存缓存:DDR应是16G
        存储:Micron的256G 应该是SSD类型,目前用的多的还有UFS等类型的NAND存储技术。
        WIFI/BT无线以及蓝模块是: LG Innotek ATC5CPC001.
        蜂窝调制解调器是: Quectel AG525R-GL.
        网关&#x

好的,我了解了你的问题。关于利用 Python + OpenCV 识别图片中的圆形(霍夫变换),我可以给你一些详细的解释和代码示例。 首先,我们需要导入 OpenCV 库和 NumPy 库。这里需要注意的是,需要安装正确的 OpenCV 版本,否则可能会出现一些问题。 ```python import cv2 import numpy as np ``` 接下来,我们需要读取图片并将其转换为灰度图像。然后,我们可以对灰度图像进行高斯模糊处理,以减少噪声。这里的高斯核大小可以根据实际情况进行调整。 ```python img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) ``` 接着,我们可以使用霍夫变换检测圆形。这里需要注意的是,需要设置最小半径和最大半径的范围,以及检测圆形的参数阈值。这些参数的设置也需要根据实际情况进行调整。 ```python circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=0, maxRadius=0) ``` 最后,我们可以将检测到的圆形标记出来,并显示图片。 ```python if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 255, 0), 2) cv2.imshow("Image", img) cv2.waitKey(0) ``` 完整代码如下: ```python import cv2 import numpy as np img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=0, maxRadius=0) if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 255, 0), 2) cv2.imshow("Image", img) cv2.waitKey(0) ``` 希望这个代码示例能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

a2591748032-随心所记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值