自然语言处理&舆情
文章平均质量分 50
LuWenHui_Leon_
ICZOOM项目组长,下属5人
主要负责:
1. 内部管理(团队管理,需求,技术培训)
2. 系统架构(分布式,低耦合,持续集成)
展开
-
舆情相似度计算
舆情相似度计算舆情的属性有以下:domain 舆情发生领域regions 舆情地域(可将全国划分至5个区域,或十个以内)opinionType 舆情类型mediaType 发布言论中各媒体类别所占的比例mediaGrade 发布言论中各媒体类别所占的比例 需要将前三个属性转换成数值型以便计算,以domain为例: domain类型原创 2014-03-08 22:15:59 · 1698 阅读 · 0 评论 -
舆情发展曲线相关度
舆情发展曲线相关度以时间轴为x轴,增量数据为y轴做曲线。 计算两条曲线之间的欧氏距离,不考虑时间尺度和增量的平移和伸缩变换[c1,c2]为目标舆情的起始时间至当前时间段 选择与目标曲线最相似(距离最短)的舆情作为预测模板。 其他距离(较复杂)http://www.doc88.com/p-98141原创 2014-03-08 22:13:26 · 1398 阅读 · 0 评论 -
舆情功能点特性
言论主题自动聚类(系统利用数据挖掘引擎的智能,自动将事先还不知道的主题与言论进行聚类)网上信息的膨胀使得在网络上寻找需要的信息越发困难,如何对蕴含在海量信息中的有效信息进行有效的挖掘和利用是一个尚待解决的问题。对文本按照其主题进行聚类是解决这一问题的一项基础性工作,对于主题的自动发现机制、特征提取、主题检索及建模等具有重要意义,为本系统中主题(话题)的自动识别,网帖等的自动归类,主题的追踪和发原创 2014-03-08 22:05:00 · 1567 阅读 · 0 评论