舆情相似度计算

本文探讨了舆情相似度计算的方法,涉及舆情的domain、regions和opinionType等属性的数值转换。通过编码策略,将不同属性转化为数值型,便于进行距离度量。以domain为例,展示了社会、伦理、教育等领域之间的距离计算。舆情A的属性矢量与其他舆情的比较,揭示了相似度计算在舆情分析中的应用。
摘要由CSDN通过智能技术生成

舆情相似度计算

舆情的属性有以下:

domain 舆情发生领域

regions 舆情地域(可将全国划分至5个区域,或十个以内)

opinionType 舆情类型

mediaType 发布言论中各媒体类别所占的比例

mediaGrade 发布言论中各媒体类别所占的比例

 

需要将前三个属性转换成数值型以便计算,以domain为例:

 

domain类型

编码(xyz)

社会

001

伦理

010

教育

100

 

这种编码的好处是各个不同值之间的距离相等,相同值之间的距离为0.

如 社会与伦理的距离:2(按位相减,再取平方和);

   社会与教育的距离:2

   社会与社会的距离:0

 

舆情A示例:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值