减法运算电路(含同反相比例运算结论以及叠加定理等预备知识)

本文介绍了线性电路中的同相比例和反相比例运算结论,以及叠加定理的概念和用法。在减法电路的分析中,通过结合这两个运算结论和叠加定理,可以得出输出电压为输入信号之差的结论。这一原理在集成运放工作在线性区时尤为适用。
摘要由CSDN通过智能技术生成

预备知识

同反相比例运算结论

1.同相比例运算结论\LARGE A_{uf}=1+\frac{R_{f}}{R_{1}} (R_{i}=\infty ,R_{o}\approx 0)

2.反相比例运算结论\LARGE A_{uf}=-\frac{R_{f}}{R_{1}},            

叠加定理

概念:在线性电路中,任一支路的电压与电流,都是各个独立源单独作用下,在该支路中产生的电压与电流的代数之和

用法:电流源独立作用时,把电压源置零,用短路替代。
           电压源独立作用时,把电流源置零,用开路替代。

说明:线性电路,即电路中只有I=U/R这种线性关系的电路,三极管和MOS管的电路不满足这个关系。然而,集成运放工作在线性区可使用叠加定理。

减法电路(重点)

1.电路结构:电路如图 1 所示,两个信号\LARGE u_{i1}\LARGE u_{i2}分别加在同相输入端和反相输入端。

图 1  减法运算电路

2.电路运算关系:由同相比例运算及反相比例运算的结论,运用叠加定理(电压电流的代数和),得

\LARGE u_{o}=(1+\frac{R_{f}}{R_{1}})(\frac{R^{'}}{R_{2}+R^{'}})u_{i2}-\frac{R_{f}}{R_{1}}u_{i1}(同相反相比例运算电压关系式的代数和)

   

当满足条件\LARGE R_{2}=R_{1}\LARGE R_{f}=R^{'}时,得\LARGE u_{o}=\frac{R_{f}}{R_{1}}(u_{i2}-u_{i1})

\LARGE R_{1}=R_{2}=R_{f}=R^{'}时,得\LARGE u_{o}=u_{i2}-u_{i1},即输出等于两个输入信号之差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值