此文来源于刘汝佳的《算法竞赛入门经典》,我只是加上了我看的时候的一些备注。。
Dijkstra算法,可用于计算正权图上的单源最短路(即SSSP),该算法适用于有向图和无向图。
以下是从单源点出发,求到所有节点的最短路的伪代码,假设途中有n个点。
清楚所有点的标号;
设d[0]=0,其他d[i]=inf;
循环n次//一:
{
在所有未标号节点中,选出d值最小的节点x;//二:
给节点x标记
对于从x出发的所有边(x,y),更新d[y]=min(d[y],d[x]+w[x][y]);
}
首先看二,为什么要选出d值最小的节点,以出发点为例,假设出发点可以到达的点有5个,则d值最小的那个是有可能更新其他4个点的d值的。而其他4个点是不可能去兜一圈来更新目前d值最小的这个节点的,也就是说,d值最小的这个节点的最短路已经确定。所以循环一次,确定一个点的最短路。所以循环n次即可确定所有点的最短路。
接下来亮上代码:
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
{
d[i]=(i==0?0:inf);
}
for(int i=0;i<n;i++)
{
int x,m=inf;
for(int y=0;y<n;y++)
{
if(!vis[y] && d[y]<=m)
{
m=d[x=y];
}
}
vis[x]=1;
for(int y=0;y<n;y++)
{
d[y]=min(d[y],d[x]+w[x][y]);
}
}