Dijkstra算法总结

此文来源于刘汝佳的《算法竞赛入门经典》,我只是加上了我看的时候的一些备注。。

Dijkstra算法,可用于计算正权图上的单源最短路(即SSSP),该算法适用于有向图和无向图。

以下是从单源点出发,求到所有节点的最短路的伪代码,假设途中有n个点。

清楚所有点的标号;

设d[0]=0,其他d[i]=inf;

循环n次//一:

{

      在所有未标号节点中,选出d值最小的节点x;//二:

      给节点x标记

      对于从x出发的所有边(x,y),更新d[y]=min(d[y],d[x]+w[x][y]);

}

首先看二,为什么要选出d值最小的节点,以出发点为例,假设出发点可以到达的点有5个,则d值最小的那个是有可能更新其他4个点的d值的。而其他4个点是不可能去兜一圈来更新目前d值最小的这个节点的,也就是说,d值最小的这个节点的最短路已经确定。所以循环一次,确定一个点的最短路。所以循环n次即可确定所有点的最短路。

接下来亮上代码:

memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
{
	d[i]=(i==0?0:inf);
}
for(int i=0;i<n;i++)
{
	int x,m=inf;
	for(int y=0;y<n;y++)
	{
		if(!vis[y] && d[y]<=m)
		{
			m=d[x=y];
		}
	}
	vis[x]=1;
	for(int y=0;y<n;y++)
	{
		d[y]=min(d[y],d[x]+w[x][y]);
	}
}


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值