sparkstreaming两种receiver方式
sparkstreaming语义
sparkstreaming有三种语义
-
At most once 一条记录要么被处理一次,要么没有被处理
-
At least once 一条记录可能被处理一次或者多次,可能会重复处理
-
Exactly once 一条记录只被处理一次
sparkstreaming对kafka的支持
sparkstreaming整合kafka的两种方式
-
0.8版本整合 :receiver方式 direct方式
-
0.10版本整合:direct方式。(0.10版本不再支持receiver方式)
receiver方式:基本上已经废弃了 基于线程拉取数据
spark的程序,启动线程去kafka里面拉取数据回来,拉取回来的数据存放spark的executor里面了,等着被其他的线程处理
拉取数据的线程与处理数据的线程,不是同一个线程
拉取数据是A线程,处理数据B线程
存在问题:拉取线程有可能一直在工作,但是处理数据线程有可能停止了 就会造成数据积压的情况
优点:使用kafka的high_level的API进行消费,kafka的offset都存储再zk里面,不用我们自己管了
direct方式:直接连接模式
拉取数据的线程以及处理数据的线程,都是同一个线程,数据拉取与数据处理都是统一批线程,不会存在线程停掉的问题
缺点:需要我们自己去维护offset 默认保存在kafka的一个topi里面了
Receiver-based Approach
- 直接用receiver接收数据。Receiver是使用Kafka高级消费者API实现的。与所有接收器一样,从Kafka通过Receiver接收的数据存储在Spark执行器中,然后由Spark Streaming启动的作业处理数据。但是在默认配置下,此方法可能会在失败时丢失数据。
- 为确保零数据丢失,必须在Spark Streaming中另外启用Write Ahead Logs(在Spark 1.2中引入)。这将同步保存所有收到的Kafka将数据写入分布式文件系统(例如HDFS)上的预写日志,以便在发生故障时可以恢复所有数据,但是性能不好。
pom文件
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>2.3.3</version>
</dependency>
核心代码
import org.apache.spark.streaming.kafka._
val kafkaStream = KafkaUtils.createStream(streamingContext,
[ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume])
完整demo
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{
DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{
Seconds, StreamingContext}
object receiver {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("KafkaReceiver08").setMaster("local[2]")
val sc = new StreamingContext(conf,Seconds(2))
sc.checkpoint("hdfs://node01:8020/kafka08WAL")
//设置ZK kafka消费组 topic信息
val zkQuorum="node01:2181,node02:2181,node03:2181"
val groupid="KafkaReceiver08"
val topics=Map("test" ->1)
//元组第一位是key 第二位是value
val receiverDS: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream(sc,zkQuorum,groupid,topics)
//获取kafka的topic数据
val data: DStream[String] = receiverDS.map(_._2)
val result: DStream[(String, Int)] = data.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
result.print()
sc.start()
sc.awaitTermination()
}
}