用tkinter写一个预测图片的小程序

hello,这次用tkinter写一个预测图片的小程序

首先要调用数据库

import tkinter as tk
from tkinter import filedialog
import tensorflow as tf
from PIL import Image, ImageTk
import numpy as np

然后,我们要调用训练好的模型

# 指定模型文件路径
model_path = 'model/16_model.h5'

# 加载模型
model = tf.keras.models.load_model(model_path)

接下来就是程序的主题了,接下来我就分段讲解代码的含义。

class ImageLoaderApp:
    def __init__(self, root):
        self.root = root
        self.root.title("Image Loader")

        self.load_button = tk.Button(root, text="Load Image", command=self.load_image)
        self.load_button.pack(pady=10)

        self.image_label = tk.Label(root)
        self.image_label.pack()

        self.title_label = tk.Label(root, text="")
        self.title_label.pack()

    def load_image(self):
        file_path = filedialog.askopenfilename(filetypes=[("Image files", "*.png;*.jpg;*.jpeg")])
        if file_path:
            self.image = tf.io.read_file(file_path)
            self.show_image = Image.open(file_path)
            self.preprocess_image_predict()
            self.display_image()

    def preprocess_image_predict(self):
        image = tf.image.decode_image(self.image, channels=3, expand_animations=False)
        target_size = (224, 224)  # 替换为模型所需的大小
        image = tf.image.resize(image, target_size)
        image = tf.expand_dims(image, axis=0)
        predictions = model.predict(image)
        if (np.argmax(predictions) < 10):
            self.title = class_names[np.argmax(predictions)]
        else:
            self.title = "I don't know"

    def display_image(self):
        img = ImageTk.PhotoImage(self.show_image)
        self.image_label.config(image=img)
        self.image_label.image = img

        title_text = self.title  # 你可以替换成你想要的标题
        self.title_label.config(text=title_text)

首先是第一段代码,这部分代码是展示应用界面的主体部分,这部分包括应用的标题,按键和其功能,图片展示,图片的标题。

class ImageLoaderApp:
    def __init__(self, root):
        #设置应用的标题
        self.root = root
        self.root.title("Image Loader")
        
        #设置应用的按键,命令为读取图片
        self.load_button = tk.Button(root, text="Load Image", command=self.load_image)
        self.load_button.pack(pady=10)
        
        #设指图片展示
        self.image_label = tk.Label(root)
        self.image_label.pack()

        #设置图片的标题
        self.title_label = tk.Label(root, text="")
        self.title_label.pack()

接下来的代码是读取图片的代码,分为两个部分,第一部分是读取图片的路径,这个作为展示使用。另一个部分也是读取图片的路径,用来给tensorflow预测。

    def load_image(self):
        file_path = filedialog.askopenfilename(filetypes=[("Image files", "*.png;*.jpg;*.jpeg")])
        if file_path:
            #读取图片(展示)
            self.image = tf.io.read_file(file_path)
            #读取图片(tensorflow)
            self.show_image = Image.open(file_path)
            self.preprocess_image_predict()
            self.display_image()

这个部分的代码是用来预测图片的,这个部分就不详细解释了,是固定的(大概吧)。

    def preprocess_image_predict(self):
        image = tf.image.decode_image(self.image, channels=3, expand_animations=False)
        target_size = (224, 224)  # 替换为模型所需的大小
        image = tf.image.resize(image, target_size)
        image = tf.expand_dims(image, axis=0)
        predictions = model.predict(image)
        if (np.argmax(predictions) < 10):
            self.title = class_names[np.argmax(predictions)]
        else:
            self.title = "I don't know"

最后是展示图片,包括图片和预测名。

    def display_image(self):
        img = ImageTk.PhotoImage(self.show_image)
        self.image_label.config(image=img)
        self.image_label.image = img

        title_text = self.title  # 你可以替换成你想要的标题
        self.title_label.config(text=title_text)

最后的最后,我们只要展示tkinter就可以了

if __name__ == "__main__":
    root = tk.Tk()
    root.geometry('500x500')
    app = ImageLoaderApp(root)
    root.mainloop()

让我们看看结果吧

虽然很简陋,但是看结果是成功了,预测结果十分甚至九分的准。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值