匈牙利算法

这是一种用增广路求二分图最大匹配的算法。它由匈牙利数学家Edmonds于1965年提出,因而得名。 定义 未盖点:设Vi是图G的一个顶点,如果Vi 不与任意一条属于匹配M的边相关联,就称Vi 是一个未盖点。

交错路:设P是图G的一条路,如果P的任意两条相邻的边一定是一条属于M而另一条不属于M,就称P是一条交错路。

可增广路:两个端点都是未盖点的交错路叫做可增广路。 

流程图

伪代码:

bool寻找从k出发的对应项出的可增广路
{
    while (从邻接表中列举k能关联到顶点j)
    {
        if (j不在增广路上)
        {
            把j加入增广路;
            if (j是未盖点 或者 从j的对应项出发有可增广路)
            {
                修改j的对应项为k;
                则从k的对应项出有可增广路,返回true;
            }
        }
    }
    则从k的对应项出没有可增广路,返回false;
}
void 匈牙利hungary()
{
    for i->1 to n
{
    if (则从i的对应项出有可增广路)
            匹配数++;
    }
    输出 匹配数;
}

演示

C实现(作者BYVoid)
#include <stdio.h>
#include <string.h>
#define MAX 102
 
long n,n1,match;
long adjl[MAX][MAX];
long mat[MAX];
bool used[MAX];
 
FILE *fi,*fo;
 
void readfile()
{
fi=fopen("flyer.in","r");
fo=fopen("flyer.out","w");
fscanf(fi,"%ld%ld",&n,&n1);
long a,b;
while (fscanf(fi,"%ld%ld",&a,&b)!=EOF)
adjl[a][ ++adjl[a][0] ]=b;
match=0;
}
 
bool crosspath(long k)
{
for (long i=1;i<=adjl[k][0];i++)
{
long j=adjl[k][i];
if (!used[j])
{
used[j]=true;
if (mat[j]==0 || crosspath(mat[j]))
{
mat[j]=k;
return true;
}
}
}
return false;
}
 
void hungary()
{
for (long i=1;i<=n1;i++)
{
if (crosspath(i))
match++;
memset(used,0,sizeof(used));
}
}
 
void print()
{
fprintf(fo,"%ld",match);
fclose(fi);
fclose(fo);
}
 
int main()
{
readfile();
hungary();
print();
return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值