基于GNN的3D MOT和轨迹预测联合框架论文阅读

本文提出一种结合图神经网络(GNN)和多样性采样的联合3D追踪和预测框架,通过GNN增强特征表示,改善数据关联的准确性,同时采用多样性采样提升轨迹预测的多样性和质量。实验表明,该方法在3D MOT和轨迹预测上取得最新性能。
摘要由CSDN通过智能技术生成

Joint 3D Tracking and Forecasting with Graph Neural Network and Diversity Sampling

系统结构图
论文下载地址
这篇文章联合训练3D追踪和预测网络,同时完成追踪和预测任务,本篇读书笔记主要研究MOT任务。

本文仅仅使用了运动特征,没有使用表观特征。本文使用双层LSTM获取历史轨迹的运动特征,双层MLP获取识别结果的运动特征,使用两层GNN网络融合节点特征,GNN网络的特征融合不独立计算,最终使用匈牙利算法得到匹配结果。

亮点:

  • 与AB3DMOT相比,追踪过程加入了神经学习网络,使用LSTM和MLP获取运动特征,并使用GNN进行特征聚合,获得更好的特征表示,使相互关联的节点相似度更高,不是相互关联的节点的相似度更低,得到更好的可区分的特征,使数据关联任务的输入更加精确。
  • 预测和追踪的联合训练,我重点关注的是追踪任务,没有详细看预测任务

本文主要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值