匈牙利算法之hdu2458

17 篇文章 0 订阅
//本题的题目大意是:给G个girl和B个boy 然后给出M个配对..表示女孩i和男孩J互相认识.并且女孩和女孩之间是相互认识的
//男孩与男孩之间是相互认识的..求找到一个最大的集合..集合里面的每个人都互相认识.
//做法:把不认识的标记为1,认识的标记为0,那么这个结果就是该二分图的最大独立点集.
//最大独立点集的概念:找出一个集合..集合内部的每个点都不互相有边连接..

//那么返回标记的1状态的话..就可以表示为每个点都有一条边与其它的点相连..就是ans

//最大匹配数=最小点覆盖=n-最大点独立集

//题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2458

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<math.h>
#include<vector>
const int inf = 0x3f3f3f;
const int MN = 220;
using namespace std;
int ppx[MN],ppy[MN],G,B,M;
bool mk[MN],map[MN][MN];
bool path(int x)
{
    for(int i = 1 ; i <= B ; i++)
    {
        if(map[x][i] && !mk[i])
        {
            mk[i] = 1;
            if(ppy[i] == -1 || path(ppy[i]))
              return 1;
        }
    }
    return 0;
}
int Maxmatch()
{
    int ans = 0;
    memset(ppx,0xff,sizeof(ppx));
    memset(ppy,0xff,sizeof(ppy));
    for(int i = 1 ; i <= G ; i++)
    {
        if(ppx[i] == -1)
        {
            memset(mk,0,sizeof(mk));
            ans += path(i);
        }
    }
    return ans;
}
int main()
{
    int t = 0;
    while(scanf("%d%d%d",&G,&B,&M) && G+B+M != 0)
    {
        t++;
        for(int i = 1 ; i <= G ; i++)
        {
            for(int j = 1 ; j <= B ; j++)
              map[i][j] = 1;
        }
        int x,y;
        for(int i = 1 ; i <= M ; i++)
        {
            scanf("%d%d",&x,&y);
            map[x][y] = 0;
        }
        int ans = Maxmatch();
        printf("Case %d: %d\n",t,G+B-ans);
    }


}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值