STL 标准库 - 001

 #include <iostream>
 #include <string>
 using std::cout;
 using std::endl;
 using std::string;
 
 namespace std2{
 template <class _T1,class _T2>
 struct pair
 {
     //两个成员
     _T1 first;
     _T2 second;
     //无参构造函数(均调用两成员的默认构造函数初始化)
     pair()
         :first(),second(){}
     //有参构造函数
     pair(const _T1& x,const _T2& y)
         :first(x),second(y){}
     //拷贝构造函数
     template <class _U1,class _U2>
     pair(const pair<_U1,_U2>& __p)
         :first(__p.first),second(__p.second){}
     //赋值运算符
     template <class _U1,class _U2>
     pair<_U1, _U2>&
     operator=(const pair<_U1,_U2>& __p)
     {
         first  = __p.first;
         second = __P.second;
         return (*this);
     }
 };
 //make_pair 函数
 template <class _T1,class _T2>
 inline pair<_T1,_T2>
 make_pair(_T1 x,_T2 y)
 {
     return pair<_T1,_T2>(x,y);
 }
 //相等判断运算符
 template <class _T1,class _T2>
 inline bool
 operator==(const pair<_T1,_T2>& x,const pair<_T1,_T2>& y)
 {
     return x.first == y.first && x.second == y.second;
 }
 }
 int main()
 {
     //测试无参构造函数
     std2::pair<int,std::string> pa1;
     cout<<"pa1:"<<pa1.first<<" "<<pa1.second<<endl;//0 empty
     pa1.first = 1;
     pa1.second = "T111";
     cout<<"pa1:"<<pa1.first<<" "<<pa1.second<<endl;
     //测试有参构造函数
     std2::pair<int,string> pa2(2,"T222");
     cout<<"pa2:"<<pa2.first<<" "<<pa2.second<<endl;
     //测试 ==
     if(pa1 == pa2){
         cout<<"pa1 = pa2"<<endl;
     }else{
        cout<<"pa1 != pa2"<<endl;
     }
     //测试 make_pair(make_pair先调用有参构造函数,返回时再调用拷贝构造函数)
     std2::pair<int,string> pa3 = std2::make_pair(3,"T333");
     cout<<"pa3:"<<pa3.first<<" "<<pa3.second<<endl;
     //测试赋值运算符
     pa3 = pa2;
     cout<<"pa3:"<<pa3.first<<" "<<pa3.second<<endl;
     //测试拷贝运算符 ??
     std2::pair<int,string> pa4(pa1);
     cout<<"pa4:"<<pa4.first<<" "<<pa4.second<<endl;
     std2::pair<int,string> pa5 = pa2;
     cout<<"pa5:"<<pa5.first<<" "<<pa5.second<<endl;
     return 0;
 }
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值