DeepLearning4J入门——使用LSTM进行大盘回归

本文介绍了如何使用DeepLearning4J(DL4J)中的LSTM进行序列回归,以处理上证指数历史数据,预测未来收盘价格。内容包括数据预处理、LSTM网络构建、训练过程及调参优化。通过实例展示了LSTM在解决时间序列问题上的应用。
摘要由CSDN通过智能技术生成

       LSTM是递归神经网络(RNN)的一个变种,相较于RNN而言,解决了记忆消失的问题,用来处理序列问题是一个很好的选择。本文主要介绍如何使用DL4J中的LSTM来执行回归分析。如果不清楚RNN和LSTM,可以先阅读 LSTM和递归网络教程 以及 通过DL4J使用递归网络 ,特别是不熟悉RNN输入和预测方式的强烈建议先阅读这两个教程。如果不太会建立DL4J的工程,建议在其样例工程中进行本实验。

      言归正传,文本通过使用 LSTM对上证指数历史数据进行回归学习,并给出一个初始序列预测之后20天的大盘收盘价格来演示如何使用LSTM处理简单的序列回归问题。首先是准备数据,可以下载例子中我使用的数据集。那么接下来的问题就分成如下几步:

1. 读入训练数据,并处理成一个DataIterator;

2. 构建一个LSTM的递归神经网络;

3. 迭代训练,并输出预测结果;

4. 调参和优化。


一.处理训练数据

我们的数据是上证指数每个交易日的基本数据,格式为:

股票代码 日期开盘价 收盘价最高价  最低价成交量  成交额涨跌幅

        这个文件中的数据是倒序的,也就是说新的数据在最前面,因此在读取数据时需要做一次倒转。我将读取文件的方法放在Dataiterator中。DL4J给出了序列数据处理的DataIterator,但是在本例中我们是自己实现一个DataIterator。代码如下:

package edu.zju.cst.krselee.example.stock;

import org.deeplearning4j.datasets.iterator.DataSetIterator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
import org.nd4j.linalg.factory.Nd4j;

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.NoSuchElementException;

/**
 * Created by kexi.lkx on 2016/8/23.
 */
public class StockDataIterator  implements DataSetIterator {

    private static final int VECTOR_SIZE = 6;
    //每批次的训练数据组数
    private int batchNum;

    //每组训练数据长度(DailyData的个数)
    private int exampleLength;

    //数据集
    private List<DailyData> dataList;

    //存放剩余数据组的index信息
    private List<Integer> dataRecord;

    private double[] maxNum;
    /**
     * 构造方法
     * */
    public StockDataIterator(){
        dataRecord = new ArrayList<>();
    }

    /**
     * 加载数据并初始化
     * */
    public boolean loadData(String fileName, int batchNum, int exampleLength){
        this.batchNum = batchNum;
        this.exampleLength = exampleLength;
        maxNum = new double[6];
        //加载文件中的股票数据
        try {
            readDataFromFile(fileName);
        }catch (Exception e){
            e.printStackTrace();
            return false;
        }
        //重置训练批次列表
        resetDataRecord();
        return
("请输入学生编号:"); scanf("%d", &p->id); printf("请输入学生姓名:"); scanf("%DL4J (DeepLearning4J)是一个基于Java的深度学习框架,可以用于实现LSTMs", p->name); printf("请输入学生成绩:"); scanf("%f", &p->score); student *prev (Long Short-Term Memory)等循环神经网络。下面是一个使用DL4J实现LSTM的基本 = NULL, *current = head; for (i = 1; i < pos; i++) { prev = current; 步骤: 1. 导入依赖 首先需要在项目中添加DL4J的依赖。可以在Maven配置文件中添加如下依赖: ``` <dependency> <groupId>org.deeplearning4j</groupId> < current = current->next; } if (prev == NULL) { head = p; // 如果要插入的是头artifactId>deeplearning4j-core</artifactId> <version>1.0.0-beta7</version> </dependency节点,修改链表头 } else { prev->next = p; // 如果要插入的不是头节点,> ``` 2. 构建数据集 构建一个包含训练数据和标签的数据集,可以使用DL4J的DataSet类来实现。例如: ``` int batchSize = 32; int vectorSize = 100; int numLabels =修改前一个节点的指针 } p->next = current; // 修改新节点的指针 count++; 2; int timeSeriesLength = 20; Random r = new Random(1234); // Create some random training data List< printf("学生信息插入成功。\n"); } // 对学生成绩进行排名 void rank_students() { int iINDArray> inputList = new ArrayList<>(); List<INDArray> labelList = new ArrayList<>(); for (int i = 0; i < 100; i++) { INDArray input = Nd4j.zeros(batchSize, vectorSize, timeSeriesLength); INDArray, j; student *p, *q; for (i = 0; i < count - 1; i++) { label = Nd4j.zeros(batchSize, numLabels, timeSeriesLength); for (int j = 0; j < batchSize; j++) { for (int k = 0; k < timeSeriesLength; k++) { input.putScalar(new int[]{j p = head; q = p->next; for (j = 0; j < count - i - 1;, 0, k}, r.nextDouble()); input.putScalar(new int[]{j, 1, k}, r.nextDouble()); label.put j++) { if (p->score < q->score) { // 交换两个节点的数据 int idScalar(new int[]{j, r.nextInt(numLabels), k}, 1.0); } } inputList.add(input); = p->id; p->id = q->id; q->id = id; char name[20]; strcpy labelList.add(label); } DataSetIterator dataSetIterator = new ListDataSetIterator<>(new List<>( new DataSet(inputList.get(i), labelList.get(i)) for i in 0..(inputList.size() - 1) ), batchSize); ``` 3. 构建模(name, p->name); strcpy(p->name, q->name); strcpy(q->name, name); float score =型 使用DL4J的MultiLayerNetwork类来构建一个多层神经网络模型,其中包含LSTM层 p->score; p->score = q->score; q->score = score; } p = p->next。例如: ``` int numHiddenNodes = 128; MultiLayerConfiguration configuration = new NeuralNetConfiguration.Builder() .seed(1234) .updater(new Adam(0.01)) .weightInit(WeightInit.XAVIER) .list() ; q = q->next; } } printf("学生成绩排名如下:\n"); p = .layer(new LSTM.Builder() .nIn(vectorSize) .nOut(numHiddenNodes) .activation(Activation.TANH head; for (i = 1; i <= count; i++) { printf("%d:%s(%d):%.) .build()) .layer(new RnnOutputLayer.Builder() .nIn(numHiddenNodes) .nOut(numLabels) .activation(Activation.SOFTMAX) .lossFunction(LossFunctions.LossFunction.MCXENT) .build()) 2f\n", i, p->name, p->id, p->score); p = p->next; } } // .build(); MultiLayerNetwork model = new MultiLayerNetwork(configuration); model.init(); ``` 4. 训练模型 使用模型和数据集进行训练,可以使用DL4J的Fit方法。例如: ``` int nEpochs = 10; for 统计学生的数量 void count_students() { printf("学生的数量为:%d\n", count); } // 主 (int i = 0; i < nEpochs; i++) { model.fit(dataSetIterator); } ``` 5. 使用函数 int main() { int choice; load_students(); // 从文件中加载学生信息,创建链表 模型进行预测 训练完成后,可以使用模型进行预测。例如: ``` INDArray input = Nd4 do { printf("学生信息管理系统\n"); printf("1. 录入学生信息\n"); printf("2j.zeros(1, vectorSize, timeSeriesLength); for (int i = 0; i < timeSeriesLength; i++) { input.putScalar(new int[]{0, 0, i}, r.nextDouble()); input.putScalar(new int[]{0, 1,. 查找学生信息\n"); printf("3. 删除学生信息\n"); printf("4. 修改学生信息\n i}, r.nextDouble()); } INDArray output = model.rnnTimeStep(input); ```
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值