这道题说是DFS基础题,但是对我来说还是很纠结,o(︶︿︶)o 唉,还是太水了。。。
解题报告思路参考了这个百度空间。
由于深度一定(m),所以使用深度优先搜索,自上而下的设定蛋糕序号,最顶层的为第1层,……,最底层的蛋糕为第m层,很明显满足题目条件的前i层的(从顶层(也就是编号为1的层)开始计数)最小面积mins[i]和体积minv[i]是在该层的半径以及高度都为i时取得,如果采用一般的神搜肯定会超时,所以这题还需要剪枝,剪枝条件有(从m层向上搜,假设前dep层的体积为sumv,面积为sums,当前所得的最小面积为best):
1> 因为前dep层的体积为sumv,如果剩下的几层的体积都取最小可能值,总体积还是比n大,那么则说明前dep层的方案不可行,所以可以剪枝(剪枝条件为:sumv+minv[dep-1]>n)
2> 因为前dep层的面积为sums,如果剩下的几层的面积都取最小可能值,所得的面积和比已经得到的所求的最小面积best大,也可以进行剪枝(剪枝条件为:sums+mins[dep-1]>best)
3> 因为前dep层的体积为sumv,那么剩余的m-dep层的体积满足:n-sumv=(h[k]*(r[k]^2)+……+h[m]*(r[m]^2))
(k=dep+1,……,m)
而剩余部分的表面积满足:lefts=2*(r[k]*h[k]+……+r[m]*h[m])>2*(n-sumv)/r[dep]
(k=dep+1,……,m)
显然有上述不等式lefts=best-sums>2*(n-sumv)/r,即2*(n-sumv)/r+sums<best,所以当2*(n-sumv)/r[i]+sums>=best时也可以进行剪枝.
#include<stdio.h>
#define MIN(a,b) (a<b?a:b)//这个貌似比调用min(a,b)函数要快
#define INF 0xffffff
int minv[25],mins[25],ans,n,m;
void dfs(int dep,int sumv,int sums,int r,int h)
{
int i,j,realh;
if(dep==0)
{
if(sumv==n&&sums<ans)
ans=sums;//满足条件,更新最小面积
return ;
}
if(sumv+minv[dep-1]>n||sums+mins[dep-1]>ans||2*(n-sumv)/r+sums>ans) return;
//三个剪枝,第三个比较强力,去掉果断TLE。
for(i=r-1;i>=dep;i--)
{
if(dep==m) sums=i*i;
realh=MIN((n-sumv-minv[dep-1])/(i*i),h-1);
//默认h应该减小1,考虑最大剩余体积除以半径的平方是最大可能高度。
//所以搜索的最大高度应该是h-1和剩余最大高度的较小值
//不加这个也会超时,不是很理解。。。
for(j=realh;j>=dep;j--)
dfs(dep-1,sumv+i*i*j,sums+2*i*j,i,j);
}
}
int main()
{
int i;
while(scanf("%d",&n)!=EOF)
{
scanf("%d",&m);
minv[0]=0;
mins[0]=1;
for(i=1;i<=m;i++)
{
minv[i]=minv[i-1]+i*i*i;
mins[i]=mins[i-1]+2*i*i;
}//理论上的最小体积,最小表面积
ans=INF;
dfs(m,0,0,n,n);
if(ans==INF)
{
printf("0\n");continue;
}
printf("%d\n",ans);
}
return 0;
}