平衡二叉树(AVL树)

目录

1. AVL树的介绍
2. AVL树的C实现
3. AVL树的C实现(完整源码)
4. AVL树的C测试程序


一:AVL树的介绍

1:定义

AVL树是根据它的发明者G.M. Adelson-Velsky和E.M.Landis命名的。
它是最先发明的自平衡二叉查找树,也被称为高度平衡树。相比于"二叉查找树",它的特点是:左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值不超过1。

2:特性

AVL树的查找、插入和删除在平均和最坏情况下都是O(logn)。
如果在AVL树中插入或删除节点后,使得高度之差大于1。此时,AVL树的平衡状态就被破坏,它就不再是一棵二叉树;为了让它重新维持在一个平衡状态,就需要对其进行旋转处理。学AVL树,重点的地方也就是它的旋转算法;在后文的介绍中,再来对它进行详细介绍。


3:旋转

下面来看《数据结构》上面的例子:


第一次旋转发生在d-e上,只旋转一次即可,中间节点变为根,父节点和子节点编程左右子树,依然保持二叉搜索树特性。第二次旋转发生在f-h上,这时要保持二叉树特性,必须先将53旋转到中间节点的位置,然后左旋转!归根到底,旋转后依然要保证二叉搜索树特性。通过分析,一共有如下四种情况:

先上图,依然是《数据结构》的图形:


假设由于二叉搜索树上插入结点而失去平衡的最小子树根结点的指针为a(离插入结点最近,且平衡因子绝对值大于1)。

(1)LL型:在*a的左子树根的左子树上插入结点,且*a由1->2时:向右旋转一次即可。

(2)LR型:在*a的左子树根的右子树上插入结点,且*a由1->2时:先左旋转后右旋转(正好对应LR型)。

(3)RR型:在*a的右子树根的右子树上插入结点,且*a由-1->-2时:左旋转一次即可。

(4)RL型:在*a的右子树根的左子树上插入结点,且*a由-1->-2时:先右旋转再左旋转(正好对应RL型)。

注意:受牵连的最小子树根以下,无论哪一种情况,经过平衡旋转后,这块根的深度不变。因此,当平衡的二叉排序树因插入结点而失去平衡时,仅需要对最小不平衡子树进行平衡旋转处理即可,不需要再往父节点递归。

详细的解释在下面列举代码时介绍。


二:AVL树的c实现

1. 节点

1.1 定义

typedef int Type;
typedef struct AVLTreeNode{
    Type key;       //关键字
    int height;     //平衡因子
    struct AVLTreeNode *left,*right;
}Node,*AVLTree;

1.2 节点的创建

static Node *avltree_create_node(Type key,Node *left,Node *right)
{
    Node *p;
    
    p = (Node *)malloc(sizeof(Node));
    if(!p)
        return NULL;
    
    //初始化结点成员
    p->key = key;
    p->height = 0;
    p->left = left;
    p->right = right;

    return p;
}

1.3 树的高度

#define HEIGHT(P) ((p==NULL)? 0: (p->height))
int avltree_height(Node *tree)
{
    return HEIGHT(tree);
}
这里空节点高度为0,非空树从1开始算起。

1.4比较大小

#define MAX(a, b)    ( (a) > (b) ? (a) : (b) )


2:旋转

2.1 LL的旋转

LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:


这里的变换是:Y成为k2的左子树,k2成为k1的右子树。

由于只牵涉到两个节点,只更新这两个节点的高度即可!

static Node *left_left_rotation(Node *k2)
{
    Node *k1;
    //结构变换(指针的变换)
    k1 = k2->left;
    k2->left = k1->right;
    k1->right = k2;
    
    //更新结点的高度,只需要更新k2和k1的即可!
    //必须先更新子树的高度,也就是先更新k2,再更新k1
    k2->height = MAX(HEIGHT(k2->left),HEIGHT(k2->right))+1;
    k1->height = MAX(HEIGHT(k1->left),k2->height)+1;
    
    return k1;  //返回新最小子树结点
}

注意:必须先更新k2

2.2 RR的旋转

理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:



static Node *right_right_rotation(Node *k1)
{
    Node *k2;
    
    k2 = k1->right;
    k1->right = k2->light;
    k2->left = k1;
    
    //先更新k1,再更新k2
    k1->height = MAX( HEIGHT(k1->left), HEIGHT(k1->right)) + 1;
    k2->height = MAX( HEIGHT(k2->right), k1->height) + 1;

    return k2;
}

2.3 LR的旋转

LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:


第一次旋转是围绕"k1"进行的"RR旋转",第二次是围绕"k3"进行的"LL旋转"。

//失衡的根节点为函数的参数,连续调用两个子函数即可!
static Node *left_right_rotation(Node *k3)
{
    k3->left = right_right_rotation(k3->left);
    return left_left_rotation(k3);
}
差点迷糊的地方:right_right_rotation为左旋转!


2.4 RL的旋转
RL是与LR的对称情况!RL恢复平衡的旋转方法如下:

第一次旋转是围绕"k3"进行的"LL旋转",第二次是围绕"k1"进行的"RR旋转"。

static Node* right_left_rotation(AVLTree k1)
{
    k1->right = left_left_rotation(k1->right);
    return right_right_rotation(k1);
}


3. 插入

Node* avltree_insert(AVLTree tree, Type key)
{
    if (tree == NULL) 
    {
        // 新建节点
        tree = avltree_create_node(key, NULL, NULL);
        if (tree==NULL)
        {
            printf("ERROR: create avltree node failed!\n");
            return NULL;
        }
    }
    else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
    {
        tree->left = avltree_insert(tree->left, key);
        // 插入节点后,若AVL树失去平衡,则进行相应的调节。
        if (HEIGHT(tree->left) - HEIGHT(tree->right) == 2)
        {
            if (key < tree->left->key)
                tree = left_left_rotation(tree);
            else
                tree = left_right_rotation(tree);
        }
    }
    else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
    {
        tree->right = avltree_insert(tree->right, key);
        // 插入节点后,若AVL树失去平衡,则进行相应的调节。
        if (HEIGHT(tree->right) - HEIGHT(tree->left) == 2)
        {
            if (key > tree->right->key)
                tree = right_right_rotation(tree);
            else
                tree = right_left_rotation(tree);
        }
    }
    else //key == tree->key)
    {
        printf("添加失败:不允许添加相同的节点!\n");
    }
    //更新树的高度
    tree->height = MAX( HEIGHT(tree->left), HEIGHT(tree->right)) + 1;

    return tree;
}

4. 删除

/* 
 * 删除结点(z),返回根节点
 *
 * 参数说明:
 *     ptree AVL树的根结点
 *     z 待删除的结点
 * 返回值:
 *     根节点
 */
static Node* delete_node(AVLTree tree, Node *z)
{
    // 根为空 或者 没有要删除的节点,直接返回NULL。
    if (tree==NULL || z==NULL)
        return NULL;

    if (z->key < tree->key)        // 待删除的节点在"tree的左子树"中
    {
        tree->left = delete_node(tree->left, z);
        // 删除节点后,若AVL树失去平衡,则进行相应的调节。
        if (HEIGHT(tree->right) - HEIGHT(tree->left) == 2)
        {
            Node *r =  tree->right;
            if (HEIGHT(r->left) > HEIGHT(r->right))
                tree = right_left_rotation(tree);
            else
                tree = right_right_rotation(tree);
        }
    }
    else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
    {
        tree->right = delete_node(tree->right, z);
        // 删除节点后,若AVL树失去平衡,则进行相应的调节。
        if (HEIGHT(tree->left) - HEIGHT(tree->right) == 2)
        {
            Node *l =  tree->left;
            if (HEIGHT(l->right) > HEIGHT(l->left))
                tree = left_right_rotation(tree);
            else
                tree = left_left_rotation(tree);
        }
    }
    else    // tree是对应要删除的节点。
    {
        // tree的左右孩子都非空
        if ((tree->left) && (tree->right))
        {
            if (HEIGHT(tree->left) > HEIGHT(tree->right))
            {
                // 如果tree的左子树比右子树高;
                // 则(01)找出tree的左子树中的最大节点
                //   (02)将该最大节点的值赋值给tree。
                //   (03)删除该最大节点。
                // 这类似于用"tree的左子树中最大节点"做"tree"的替身;
                // 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
                Node *max = avltree_maximum(tree->left);
                tree->key = max->key;
                tree->left = delete_node(tree->left, max);
            }
            else
            {
                // 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
                // 则(01)找出tree的右子树中的最小节点
                //   (02)将该最小节点的值赋值给tree。
                //   (03)删除该最小节点。
                // 这类似于用"tree的右子树中最小节点"做"tree"的替身;
                // 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
                Node *min = avltree_maximum(tree->right);
                tree->key = min->key;
                tree->right = delete_node(tree->right, min);
            }
        }
        else
        {
            Node *tmp = tree;
            tree = tree->left ? tree->left : tree->right;
            free(tmp);
        }
    }
    //更新树的高度  
    tree->height = MAX( HEIGHT(tree->left), HEIGHT(tree->right)) + 1; 
    return tree;
}

/* 
 * 删除结点(key是节点值),返回根节点
 *
 * 参数说明:
 *     tree AVL树的根结点
 *     key 待删除的结点的键值
 * 返回值:
 *     根节点
 */
Node* avltree_delete(AVLTree tree, Type key)
{
    Node *z; 

    if ((z = avltree_search(tree, key)) != NULL)
        tree = delete_node(tree, z);
    return tree;
}



注意关于AVL树的"前序遍历"、"中序遍历"、"后序遍历"、"最大值"、"最小值"、"查找"、"打印"、"销毁"等接口与"二叉查找树"基本一样,这些操作在"二叉查找树"中已经介绍过了,这里就不再单独介绍了。当然,后文给出的AVL树的完整源码中,有给出这些API的实现代码。这些接口很简单,Please RTFSC(Read The Fucking Source Code)!
















参考:http://www.cnblogs.com/skywang12345/p/3576969.html

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值