使用pytorch-superpoint与pytorch-superglue项目实现训练自己的数据集

本文档详述如何在pytorch-superpoint与pytorch-superglue项目中训练自定义数据集,包括项目运行前的优化、强制使用原始superpoint、使用superpoint进行图像配准训练,以及在superglue上的训练配置。涉及修复YML加载、文件存在优化、特征点提取问题,以及模型加载和训练命令的调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

superpoint与superglue的组合可以实现基于深度学习的图像配准,官方发布的superpoint与superglue模型均基于coco数据训练,与业务中的实际数据或许存在差距,为此实现基于开源的pytorch-superpoint与pytorch-superglue项目实现训练自己的数据集。然而,在训练pytorch-superpoint有诸多细节需要优化,特此整理成技术文档。本文档描述了实验pytorch-superpoint与pytorch-superglue项目训练自己的图像配准模型。训练好的模型需要部署可以参考https://hpg123.blog.csdn.net/article/details/129093084 ,该链接实现了SuperGluePretrainedNetwork项目的调整(支持pytorch-superpoint与pytorch-superglue项目中训练出的模型),支持将模型导出为onnx部署。

通过本博文订阅专栏的csdn朋友,可以找我要修改好的pytorch-superpoint与pytorch-superglue项目代码。

https://github.com/eric-yyjau/pytorch-superpoint
superpoint依赖gpu版的torch和torchvision,为确保torchvision是gpu版的建议重新安装torch环境&#

评论 50
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值