Anaconda 配置 Python 环境

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/a51509/article/details/96171833

原文地址:Anaconda 配置 Python 环境

0x00 环境

Anaconda: 2019.03
Python: 3.6.8

0x01 Linux 安装 Anaconda

交互安装

Anaconda 下载地址: Anaconda-2019.03-Linux

本文中安装位置为 /usr/local/anaconda3

下载安装脚本,赋予执行权限并安装

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2019.03-Linux-x86_64.sh
chmod +x Anaconda3-2019.03-Linux-x86_64.sh
./Anaconda3-2019.03-Linux-x86_64.sh

启动安装脚本后按回车开始阅读 License,空格键翻页,最后输入 yes同意协议开始安装

输入安装目录,这里使用 /usr/local/anaconda3

安装完成后脚本会询问是否将 Anaconda3 启动脚本加入终端初始化脚本中,选择 yes

Do you wish the installer to initialize Anaconda3 by running conda init? [yes|no]

静默安装

-b 用于静默安装

-p 用于指定安装目录

./Anaconda3-2019.03-Linux-x86_64.sh -b -p /usr/local/anaconda3

配置 Anaconda 环境随终端启动

上面的操作中如果交互式安装最后一步使用了默认的 no或者使用了 静默安装,Anaconda 都不会添加随终端启动的脚本

需要手动向 ~/.bashrc中添加以下脚本,Anaconda 安装路径根据实际情况进行更改

# >>> conda initialize >>>
__conda_setup="$('/usr/local/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
    eval "$__conda_setup"
else
    if [ -f "/usr/local/anaconda3/etc/profile.d/conda.sh" ]; then
        . "/usr/local/anaconda3/etc/profile.d/conda.sh"
    else
        export PATH="/usr/local/anaconda3/bin:$PATH"
    fi
fi
unset __conda_setup
# <<< conda initialize <<<

应用更改

完成以上步骤后执行 source命令重新加载 ~/.bashrc

source ~/.bashrc

0x02 Windows 安装 Anaconda

Anaconda 下载地址: Anaconda-2019.03-Windows

本文中安装位置为 D:\anaconda3

打开安装包一路下一步直到配置安装路径,修改为 D:\anaconda3,点击下一步

Advanced Options中选中两个复选框,其中第一个是将 Anaconda 创建的虚拟环境加入系统变量中,第二个是将 Anaconda 中的 Python 注册为默认环境

等待安装完成即可

0x03 配置 Anaconda 仓库并修改 Python 版本

修改 Anaconda 镜像仓库为 TUNA 开源镜像站

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

新版 Anaconda 默认的 Python 版本为 3.7,但实际开发中一般会使用 3.6

修改默认 Python 版本为 3.6

conda install python=3.6

0x04 Anaconda 使用简介

简介中将软件包、版本号等用户自定义的部分用 []括起来

在执行会使软件包变更的命令时,Anaconda 会自动寻找可以满足依赖关系的变更方案

这里只介绍基础的 conda 命令,完整的使用手册请参考 Anaconda 官方文档

安装软件包

格式

conda install [package name]
conda install [package name]=[version]

示例

conda install python
conda install python=3.6

升级软件包

格式

conda update [package name]

示例

conda update conda
conda update python

移除软件包

格式

conda remove [package name]

示例

conda remove conda
conda remove python

创建虚拟环境

Anaconda 默认使用的虚拟环境名为 base

为了多种不同用途(例如在两个项目的开发中要求不同或冲突的软件包版本),我们可以创建多个环境并随时切换

创建过程中需要指定配置基础环境需要安装的软件包

格式

conda create -n [env name] [base package name]=[base package version]

示例

conda create -n py37 python=3.7
conda create -n opencv341 opencv=3.4.1

删除虚拟环境

格式

conda remove -n [env name] --all

示例

conda remove -n py37 --all

切换虚拟环境

格式

conda activate [env name]

示例

conda activate py37
conda activate opencv341

关闭虚拟环境

该命令关闭了 Anaconda 的虚拟环境,仅使用系统中除 Anaconda 外配置的环境

格式

conda deactivate

示例

conda deactivate

查看 Anaconda 配置信息

示例

conda info

查看已安装的软件包

格式

conda list
conda list [package name]

示例

conda list
conda list python
conda list opencv

在已配置的仓库中查找软件包

格式

conda search [package name]

示例

conda search python
conda search opencv

查看虚拟环境

示例

conda env list
展开阅读全文

使用Anaconda安装python环境

01-24

<p>rn <br />rn</p>rn<p>rn 20周年限定:唐宇迪老师一卡通!<span style="color:#337FE5;">可学唐宇迪博士全部课程</span>,仅售799元(原价10374元),<span style="color:#E53333;">还送漫威授权机械键盘+CSDN 20周年限量版T恤+智能编程助手!</span> rn</p>rn<p>rn 点此链接购买:rn</p>rn<table>rn <tbody>rn <tr>rn <td>rn <a href="https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy" target="_blank"><span style="color:#337FE5;">https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy</span></a> rn </td>rn </tr>rn </tbody>rn</table>rn<p>rn <br />rn</p>rn购买课程后,请扫码进入学习群<span style="font-family:&quot;">,获取唐宇迪老师答疑</span> rn<div>rn <img src="https://img-bss.csdn.net/201908070344327835.jpg" alt="" /> rn</div>rn<p>rn <br />rn</p>rn<p>rn Python数据分析与机器学习实战教程,该课程精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家入门机器学习。学完该课程即可:rn1.掌握Python数据科学工具包,包括矩阵数据处理与可视化展示。rn2.掌握机器学习算法原理推导,从数学上理解算法是怎么来的以及其中涉及的细节。rn3.掌握每一个算法所涉及的参数,详解其中每一步对结果的影响。rn4.熟练使用Python进行建模实战,基于真实数据集展开分析,一步步完成整个建模实战任务。rn</p>

没有更多推荐了,返回首页