题目描述
共有 n
名小伙伴一起做游戏。小伙伴们围成一圈,按 顺时针顺序 从 1
到 n
编号。确切地说,从第 i
名小伙伴顺时针移动一位会到达第 (i+1)
名小伙伴的位置,其中 1 <= i < n
,从第 n
名小伙伴顺时针移动一位会回到第 1
名小伙伴的位置。
游戏遵循如下规则:
- 从第
1
名小伙伴所在位置 开始 。 - 沿着顺时针方向数
k
名小伙伴,计数时需要 包含 起始时的那位小伙伴。逐个绕圈进行计数,一些小伙伴可能会被数过不止一次。 - 你数到的最后一名小伙伴需要离开圈子,并视作输掉游戏。
- 如果圈子中仍然有不止一名小伙伴,从刚刚输掉的小伙伴的 顺时针下一位 小伙伴 开始,回到步骤
2
继续执行。 - 否则,圈子中最后一名小伙伴赢得游戏。
给你参与游戏的小伙伴总数 n
,和一个整数 k
,返回游戏的获胜者。
示例 1:
输入:n = 5, k = 2
输出:3
解释:游戏运行步骤如下:
1) 从小伙伴 1 开始。
2) 顺时针数 2 名小伙伴,也就是小伙伴 1 和 2 。
3) 小伙伴 2 离开圈子。下一次从小伙伴 3 开始。
4) 顺时针数 2 名小伙伴,也就是小伙伴 3 和 4 。
5) 小伙伴 4 离开圈子。下一次从小伙伴 5 开始。
6) 顺时针数 2 名小伙伴,也就是小伙伴 5 和 1 。
7) 小伙伴 1 离开圈子。下一次从小伙伴 3 开始。
8) 顺时针数 2 名小伙伴,也就是小伙伴 3 和 5 。
9) 小伙伴 5 离开圈子。只剩下小伙伴 3 。所以小伙伴 3 是游戏的获胜者。
示例 2:
输入:n = 6, k = 5
输出:1
解释:小伙伴离开圈子的顺序:5、4、6、2、3 。小伙伴 1 是游戏的获胜者。
提示:
1 <= k <= n <= 500
这题我苦死良久,想着用索引去搞出来,但无论怎么想,结果都不对。或许这题本来就该模拟,用循环队列去解决问题。
看了一下官方,嗯,果然如此,是我在故作复杂,想太多了。这题就当是帮我复习巩固队列的数据结构知识点吧。
标准模拟:
//标准解法:队列
class Solution {
public int findTheWinner(int n, int k) {
Queue<Integer> queue = new ArrayDeque();
//依次添加
for(int i=1;i<=n;i++){
queue.offer(i);
}
//循环判断
while(queue.size()>1){
//队首取出,再队尾加入,重复k-1次
for(int i=1;i<k;i++){
queue.offer(queue.poll());
}
//结束后将队首元素真正淘汰
queue.poll();
}
//队列中剩下一个元素时,返回结果
return queue.peek();
}
}
当然,这类数学问题往往有数学解法;而这,也就是我想的索引的方法(虽然我能力不足,写不出来)。
数学:
class Solution {
public int findTheWinner(int n, int k) {
int winner = 1;
for (int i = 2; i <= n; i++) {
winner = (k + winner - 1) % i + 1;
}
return winner;
}
}
这题是经典的约瑟夫环问题,目前我得先掌握第一种基础方法。至于数学方法,还是要继续历练,继续学习。