数据结构与算法-图的广度优先遍历【十六】

图的广度优先遍历与树的广度优先遍历类似,用队列来实现。

节点出队,节点的所有邻接点入队。如此循环,直到队列为空。

还是以邻接矩阵表示图,咱们用下面这个图。
在这里插入图片描述

用邻接矩阵去表示这个图,邻接表的广度优先遍历思路是一致的,只是去找邻接点的时候邻接表会更快。

图的定义:

  
  function Graph(vexs = [], arcs = []) {
      this.vexs = vexs
      this.arcs = arcs
  }

vexs 存储了4个顶点:

const vexs= [ 'A', 'B', 'C', 'D', 'E', 'F', 'G']

arcs是一个二维数组,长这样:

const arcs=
   [
       [0, 1, 0, 0, 1, 1, 0],
       [1, 0, 1, 1, 0, 0, 0],
       [0, 1, 0, 0, 0, 0, 1],
       [0, 1, 0, 0, 0, 0, 1],
       [1, 0, 0, 0, 0, 1, 0],
       [1, 0, 0, 0, 1, 0, 0],
       [0, 0, 1, 1, 0, 0, 0],
 ]

初始化这个图:

  var graph = new Graph(vexs, arcs);

function bfs(graph) {
	
  // // 从节点A开始
  let queue = []
  queue.push(0)

  while (queue.length !==0) {
    let len = queue.length;
    for (let i = 0; i < len; i++) {
      // 当前顶点
      let index = queue.shift()
      console.log(`当前访问的是第${index}个节点: `, graph.vexs[index])
      visited[index] = true
      // 找到当前顶点的所有邻接点
      for(let j =0; j < graph.vexs.length; j++) {
        if(graph.arcs[index][j] !==0 && visited[j]!==true) {
          queue.push(j)
          // 这里也必须加上 visited[j] = true 不然会重复入队
          visited[j] = true
        }
      }
    }
  }
}

广度优先遍历的时间复杂度分析:

邻接矩阵来说需要遍历矩阵里面的每一个元素,时间复杂度为O(n^2)
邻接表来说时间复杂度为O(n+e)


bfs(广度优先遍历)与dfs(深度优先遍历)比较:

时间复杂度只与存储结构相关,如果是矩阵那么时间复杂度为O(n^2)
空间复杂度都为O(n) ,dfs的递归用到了栈,bfs是用到了队列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值