Python实现自动批改作业系统~

本文介绍如何使用Python实现自动批改作业系统,包括图像识别和切割识别两个主要步骤。首先通过准备数据、训练数据和预测数据进行图像识别,然后利用图像切割技术定位和识别数字。最终,系统能对作业进行正确、错误和未答的判断,并在原图上进行标记反馈。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导语:

幼儿园升小学,小学升中学,中学升高中..........

每个人都要经历的九年义务教育:伴随的都是作业、随堂考、以及每个科目的大大小小的考试。当然小编被考试支配的恐惧已经过去了哈~

最近一些软件的搜题、智能批改类的功能即将要下线。

退10000步讲,要不要自己做一个自动批改的功能啊?万一哪天孩子要用呢!

昨晚我做了一个梦,梦见我实现了这个功能,如下图所示:

功能简介作对了,能打对号;做错了,能打叉号;没做的,能补上答案。

醒来后,我环顾四周,赶紧再躺下,希望梦还能接上。

实现步骤

基本思路:能够搞定 识别数字,第二是能 切分数字

首先得能认识5是5,这是前提条件,其次是能找到5、6、7、8这些数字区域的位置。

前者是图像识别,后者是图像切割

图像识别

  • 对于图像识别,一般的套路是下面这样的(CNN卷积神经网络):

  • 对于图像切割,一般的套路是下面的这样(横向纵向投影法):

既然思路能走得通,那么咱们先搞图像识别。准备数据->训练数据并保存模型->使用训练模型预测结果

2.1 准备数据

对于男友,找一个油嘴滑舌的花花公子,不如找一个闷葫芦IT男,亲手把他培养成你期望的样子。

咱们不用什么官方的mnist数据集,因为那是官方的,不是你的,你想要添加±×÷它也没有。

有些通用的数据集,虽然很强大,很方便,但是一旦放到你的场景中,效果一点也不如你的愿。

只有训练自己手里的数据,然后自己用起来才顺手。更重要的是,我们享受创造的过程。

假设,我们只给口算做识别,那么我们需要的图片数据有如下几类:

索引:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
字符:0 1 2 3 4 5 6 7 8 9  =  +  -  ×  ÷

如果能识别这些,基本上能满足整数的加减乘除运算了。

如果你用的是windows系统,那么打开KaTeX parse error: Undefined control sequence: \Windows at position 3: C:\̲W̲i̲n̲d̲o̲w̲s̲\Fonts这个文件夹,你会发现好多字体。

我们写代码调用这些字体,然后把它打印到一张图片上,是不是就有数据了。

2.1.1 准备字体

建一个fonts文件夹,从字体库里拷一部分字体放进来,我这里是拷贝了13种字体文件。

好的,准备工作做好了,肯定很累吧,休息休息休息,一会儿再搞!

2.1.2 生成图片

代码如下,可以直接运行。

from __future__ import print_function
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
import os
import shutil
import time

# %% 要生成的文本
label_dict = {0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: '=', 11: '+', 12: '-', 13: '×', 14: '÷'}

# 文本对应的文件夹,给每一个分类建一个文件
for value,char in label_dict.items():
    train_images_dir = dataset+/+str(value)
    if os.path.isdir(train_images_dir):
        shutil.rmtree(train_images_dir)
    os.makedirs(train_images_dir)

# %% 生成图片
def makeImage(label_dict, font_path, width=24, height=24, rotate = 0):

    # 从字典中取出键值对
    for value,char in label_dict.items():
        # 创建一个黑色背景的图片,大小是24*24
        img = Image.new(RGB, (width, height), black) 
        draw = ImageDraw.Draw(img)
        # 加载一种字体,字体大小是图片宽度的90%
        font = ImageFont.truetype(font_path, int(width*0.9))
        # 获取字体的宽高
        font_width, font_height = draw.textsize(char, font)
        # 计算字体绘制的x,y坐标,主要是让文字画在图标中心
        x = (width - font_width-font.getoffset(char)[0]) / 2
        y = (height - font_height-font.getoffset(char)[1]) / 2
        # 绘制图片,在那里画,画啥,什么颜色,什么字体
        draw.text((x,y), char, (255, 255, 255), font)
        # 设置图片倾斜角度
        img = img.rotate(rotate)
        # 命名文件保存,命名规则:dataset/编号/img-编号_r-选择角度_时间戳.png
        time_value = int(round(time.time() * 1000))
        img_path = dataset/{}/img-{}_r-{}_{}.png.format(value,value,rotate,time_value)
        img.save(img_path)
        
# %% 存放字体的路径
font_dir = ./fonts
for font_name in os.listdir(font_dir):
    # 把每种字体都取出来,每种字体都生成一批图片
    path_font_file = os.path.join(font_dir, font_name)
    # 倾斜角度从-10到10度,每个角度都生成一批图片
    for k in range(-10, 10, 1): 
        # 每个字符都生成图片
        makeImage(label_dict, path_font_file, rotate = k)

上面纯代码不到30行,相信大家应该能看懂!看不懂不是我的读者。

核心代码就是画文字。

draw.text((x,y), char, (255, 255, 255), font)

翻译一下就是:使用某字体在黑底图片的(x,y)位置写白色的char符号。

核心逻辑就是三层循环。

如果代码你运行的没有问题,最终会生成如下结果:

好了,数据准备好了。总共15个文件夹,每个文件夹下对应的各种字体各种倾斜角的字符图片3900个(字符15类×字体13种×角度20个),图片的大小是24×24像素。

有了数据,我们就可以再进行下一步了,下一步是训练使用数据。

2.2 训练数据

2.2.1 构建模型

# %% 导入必要的包 
import tensorflow as tf
import numpy as np
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import pathlib
import cv2

# %% 构建模型
def create_model():
    model = Sequential([
        layers.experimental.preprocessing.Rescaling(1./255, input_shape=(24, 24, 1)),
        layers.Conv2D(24,3,activation='relu'),
        layers.MaxPooling2D((2,2)),
        layers.Conv2D(64,3, activation='relu'),
        layers.MaxPooling2D((2,2)),
        layers.Flatten(),
        layers.Dense(128, activation='relu'),
        layers.Dense(15)]
    )
    
    model.compile(optimizer='adam',
                loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                metrics=['accuracy'])

    return model

这个模型的序列是下面这样的,作用是输入一个图片数据,经过各个层揉搓,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值