Treap=Tree+Heap
Treap是一棵
二叉排序树,它的左子树和右子树分别是一个Treap,和一般的二叉排序树不同的是,Treap纪录一个额外的数据,就是优先级。Treap在以关键码构成二叉排序树的同时,还满足堆的性质(在这里我们假设节点的优先级大于该节点的孩子的优先级)。但是这里要注意的是Treap和二叉堆有一点不同,就是
二叉堆必须是完全二叉树,而Treap可以并不一定是。
#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
struct Node
{
Node* ch[2];
int weight;//权值
int r;//优先级
Node(int weight, int r):weight(weight), r(r)
{
ch[0] = ch[1] = NULL;
}
bool operator < (const Node& a) const
{
return r < a.r;//
}
int cmp(int x)
{
if (weight==x)
return -1;
return x < weight ? 0 : 1;
}
};
//旋转,x=0左旋,x=1右旋
void Rotate(Node* &o, int x)
{
Node* t = o->ch[x^1];
o->ch[x^1] = t->ch[x];
t->ch[x] = o;
o = t;
}
//插入,以o为根的子树中插入键值x,修改o
void Insert(Node* &o, int x)
{
if (o==NULL)
{
o = new Node(x, rand());
}
else
{
int comp = o->cmp(x);
if (comp==-1)//权值相等不能插入
return;
Insert(o->ch[comp], x);
if (o->ch[comp] > o)
Rotate(o, comp^1);
}
}
//删除
void Remove(Node* &o, int x)
{
if (o==NULL)
return ;
int comp = o->cmp(x);
if (comp==-1)
{
if (o->ch[0]==NULL)//左子树不存在
o = o->ch[1];
else if (o->ch[1]==NULL)//右子树不存在
o = o->ch[0];
else
{
int d = o->ch[0] > o->ch[1] ? 1 : 0;//左子树优先级高,d=1,或者
Rotate(o, d);//d=1,右旋o,或者
Remove(o->ch[d], x);//在右子树中删除x,或者
}
}
else
Remove(o->ch[comp], x);
}
int Find(Node* o, int x)
{
while (o!=NULL)
{
int d = o->cmp(x);
if (d==-1)
return 1;//找到了
o = o->ch[d];
}
return -1;//没有找到
}
void BianLi(Node* o)//
{
if (o==NULL)
return ;
BianLi(o->ch[0]);
printf("%d ", o->weight);
BianLi(o->ch[1]);
}
int main()
{
return 0;
}