归并排序求逆序数

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=117

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列。如2431中,21,43,41,31是逆序,逆序数是4,为偶排列。

逆序数的直接求法:按照定义直接枚举求出逆序数。

归并排序求法:归并排序中将当前排序区间[L, R)分成两个区间[L, mid),[mid, R),将[L, mid)和[mid, R)以及[L, R)的逆序数全加起来就是[L,R)的逆序数。对于[L, R)的逆序数就可以在归并的过程求出来,具体在程序中。

#include <iostream>
#include <cstdio>
using namespace std;
#define maxn 1000005
int a[maxn], temp[maxn];
long long ans;
void MergeSort(int a[], int l, int mid, int r)
{
      int k=0;
      int i = l, n = mid, j = mid, m = r;
      while ( i<n && j<m )
      {
            if (a[i] <= a[j])
            {
                  temp[k++] = a[i++];
            }
            else
            {
                  ans += n-i;//此处为求逆序数
                  temp[k++] = a[j++];
            }
      }
      while (i<n)
            temp[k++] = a[i++];
      while (j<m)
            temp[k++] = a[j++];
      for (int t = 0; t<k; ++t)
            a[l+t] = temp[t];
}
void Sort(int a[], int l, int r)
{
      if (r-l<=1)
            return ;
      int mid = (l+r)>>1;
      Sort(a, l, mid);
      Sort(a, mid, r);
      MergeSort(a, l, mid, r);
}

int main()
{
      int ncase, n;
      cin >> ncase;
      while (ncase--)
      {
            scanf("%d", &n);
            for (int i=0; i<n; ++i)
                  scanf("%d", &a[i]);
            ans = 0;
            Sort(a, 0, n);
            printf("%lld\n", ans);
      }
      return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值