题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=117
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列。如2431中,21,43,41,31是逆序,逆序数是4,为偶排列。
逆序数的直接求法:按照定义直接枚举求出逆序数。
归并排序求法:归并排序中将当前排序区间[L, R)分成两个区间[L, mid),[mid, R),将[L, mid)和[mid, R)以及[L, R)的逆序数全加起来就是[L,R)的逆序数。对于[L, R)的逆序数就可以在归并的过程求出来,具体在程序中。
#include <iostream>
#include <cstdio>
using namespace std;
#define maxn 1000005
int a[maxn], temp[maxn];
long long ans;
void MergeSort(int a[], int l, int mid, int r)
{
int k=0;
int i = l, n = mid, j = mid, m = r;
while ( i<n && j<m )
{
if (a[i] <= a[j])
{
temp[k++] = a[i++];
}
else
{
ans += n-i;//此处为求逆序数
temp[k++] = a[j++];
}
}
while (i<n)
temp[k++] = a[i++];
while (j<m)
temp[k++] = a[j++];
for (int t = 0; t<k; ++t)
a[l+t] = temp[t];
}
void Sort(int a[], int l, int r)
{
if (r-l<=1)
return ;
int mid = (l+r)>>1;
Sort(a, l, mid);
Sort(a, mid, r);
MergeSort(a, l, mid, r);
}
int main()
{
int ncase, n;
cin >> ncase;
while (ncase--)
{
scanf("%d", &n);
for (int i=0; i<n; ++i)
scanf("%d", &a[i]);
ans = 0;
Sort(a, 0, n);
printf("%lld\n", ans);
}
return 0;
}