转自http://blog.sina.com.cn/u/1373223820
相似维数
先让我们看一个简单的事实。根据相似性,如图1 把各图形的边长2 等分,当然,线段是一半长度的2 个线段,正方形则是每边为原来1/2 的4 个正方形,而立方体则是8 个。也就是说,线段、正方形、立方体可被看成为分别由2 、4 、8 个把全体分成1/2 的相似形组成。2 、4 、8 数字还可以写成2的1次方 、2的2次方 、2的3次方 ,显然这里的指数与其图形的经验维数相一致。推而广之,若某图形是由把全体缩小成1/ a 的b 个相似形所组成,由于b = a的D次方 ,则有D =logb/loga
此D 便是几何图形的维数, 由于它是通过相似变换得来的,所以此维数一般称为相似维数。用Ds 表示。显然Ds 不必一定是整数,所有经典分形集的维数都可由此式计算, 如Cantor 集。a =3 , b =2 , Ds =lo g2/lo g3=0.6309 ⋯。Koch 曲线a =3 , b =4 , Ds =lo g4/lo g3=1.2618 ⋯。
容量维数
假定要考虑的图形是d 维欧几里得空间Rd 中的有界集合。用半径为ε的d 维球包覆其集合时,假定N (ε) 是球的个数的最小值。容量维数Dc 可用下式来定义Dc ≡lim(ε→0)logN(ε)/log(1/ε)
此定义与Hausdorff 维数很相似。在Hausdorff 维数中,虽然把球的大小作为比ε还小的任意球,但如果把它限定在1 个大小为特珠情况下则为容量维数。DC 虽常与DH 相一致,但有时也取不同的值,一般的关系是
DC ≥DH
维数的Hausdorff 定义和容量定义,在数学上都是很严密的。但要广泛用于自然科学,有时也有不适之处。比方说,不论哪个定义都把包覆球的半径的极限考虑为0, 这在实际测定中是不能达到的。所以有必要将维数定义改成更实用一些的。
盒子维数
容量维数的定义,提示了一种测量分形的方法。取边长为ε的小盒子,把分形覆盖起来。由于分形内部有各种层次的空洞和缝隙,有些小盒子会是空的。数有多少盒子不是空的,把这个数目记为N (ε) 。然后缩小盒子的尺寸ε,所数得的N (ε) 自然要增大。根据前面的定义, 只要在双对数坐标纸上画出lnN(ε)对lnε的曲线,其直线部分的斜率就是此分形对象的盒子孙维数D0。这种看起来很简便的“数盒子”方法,有着理论和实践两方面的局限性。对于实际计算,只有分维小于二维或在二维附近,而相空间维数也不高时,它才是可行的;维数增高后,计算量迅速上升,以致很难得到收敛的结果。从理论上看,一个小盒子不管是包含了分形的一个点或是一批点,都算是非空的,可在N (ε) 中占有一席之地,这就完全不能反映分形内部的不均匀性。不过分维的定义就是如此;只有修改维数的定义,才能改进描述的细致程度。